Цементит

Компоненты в системе «железо-углерод»

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит:

Железо

Железо – d-переходный металл серебристо-светлого цвета. Температура плавления – 1539° С. Удельный вес равен 7,86 г/см3. Наиболее существенной особенностью железа является его полиморфизм. В твердом состоянии железо может находиться в двух модификациях — α и γ. Полиморфные превращения происходят при температурах 911° С и 1392° С. При температуре ниже 911° С и выше 1392° С существует Feα (или α-Fе) с объемно-центрированной кубической решеткой. В интервале температур 911…1392° С устойчивым является Feγ (или γ-Fе) с гранецентрированной кубической решеткой. При превращении α→γ наблюдается уменьшение объема, так как решетка γ-Fе имеет более плотную упаковку атомов, чем решетка α-Fе. При охлаждении во время превращения γ→α наблюдается увеличение объема. В интервале температур 1392…1539° С высокотемпературное Feα называют Feδ. Высокотемпературная модификация Feα не представляет собой новой аллотропической формы.

При температуре ниже 768° С железо ферромагнитно, а выше – парамагнитно. Точку 768° С, соответствующую магнитному превращению, т.е. переходу из ферромагнитного состояния в парамагнитное называют точкой Кюри. Модификация Feγ парамагнитна.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (временное сопротивление – σв=250 МПа, предел текучести – σт=120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ=50 %, а относительное сужение – ψ=80 %). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна. Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.

Углерод

Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500° С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000° С).

В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

Цементит

Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав. Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита

Этот процесс имеет важное практическое значение при структурообразовании чугунов

Материалы для производства силикатных бетонов

Основным вяжущим компонентом в силикатном бетоне выступает тонкомолотая известь кипелка или известь-пушонка, которая в сочетании с заполнителями и составляет основное сырье для производства силикатных бетонов. После добавления воды и последующей тепловой обработки в автоклавах, силикатобетонная смесь превращаться в прочное бетонное изделие.

Известь, применяемая для производства силикатных смесей должна отвечать следующим свойствам:

  • средняя скорость гидратации;
  • умеренный экзотермический эффект;
  • вся фракция должна быть одинаково обожженной;
  • MgO менее 5%;
  • время гашения извести — 20 мин не более.

Недожог известковой массы приводит к повышенному расходу материала. Пережог снижает время гидратации извести, что приводит к вспучиванию, появлению трещин на поверхности изделий и др.

Известь

Известь, применяемая для производства силикатобетона, обычно используется в виде тонкомолотых известковых смесей следующего состава:

  • известково-кремнеземистые — соединение извести и кварцевого песка;
  • известково-шлаковые (известь и доменный шлак);
  • известково-зольные — топливная сланцевая или угольная зола и известь;
  • известково-керамзитовые и другие подобные компоненты, получаемые из отходов промышленного производства пористых заполнителей;
  • известково-белитовые вяжущие, получаемые при низкотемпературном обжиге известково-кремнеземистой сухой смеси и кварцевого песка.

В качестве кремнеземистых заполнителей используют следующие материалы:

  • кварцевый молотый песок;
  • металлургические (доменные) шлаки;
  • зола ТЭЦ.

Наиболее часто в качестве заполнителей выступают кварцевые пески средней и мелкой фракции, которые по своему составу должны выглядеть следующим образом:

  • 80% и более кремнезема;
  • менее 10% глинистых включений;
  • 0,5% и меньше примесей слюды.

Крупные включения глины в структуре кварцевого песка снижают морозостойкость и прочность силикатного бетона.

Кварцевый песок

Тонкомолотый кварцевый песок оказывает значительное влияние на формирование высоких эксплуатационных свойств силикатных бетонов. Так, с повышением дисперсности частиц песка увеличивается морозостойкость, прочность и другие характеристики силикатных материалов.

При выборе составляющих для изготовления силикатного бетона необходимо знать следующее:

  1. Расход вяжущего увеличивается пропорционально увеличению прочности бетона.
  2. Снижение расхода вяжущих в составе силикатной смеси наблюдается при повышении дисперсности мелкого кварцевого песка, и увеличивается при повышении формовочной влажности силикатобетонного раствора.
  3. Дисперсность молотого кварцевого песка должна быть в 2,5 раза ниже дисперсности молотой извести.

Степень измельчения/помол

От данного свойства зависит, через какое время затвердеет цемент, и какая прочность будет у этого затвердевшего материала. Лучше выбирать мелкий помол, поскольку именно у такого материала быстро происходит реакция взаимодействия между цементом и водой, увеличивается прочность. Но наиболее мелкая степень измельчения имеет противоположный результат – у цемента увеличивается потребность в воде, происходят осадочные деформации. Все это влечет за собой понижение прочности цемента. Чтобы не прогадать, строители рекомендуют, чтобы в составе цемента были как крупные частицы – 80 мкм, так и мелкие – порядка 40 мкм. Чтобы сэкономить, можно в обычный крупного помола цемент добавить сверхтонкий. Достаточно, чтобы последний составлял 15-25%.

Общие сведения о сплаве

Отличительным свойством стали является наличие в структуре специальных легированных примесей и углерода. Собственно, по содержанию углерода и определяют доэвтектоидный сплав

Здесь важно различать и классическую эвтектоидную, а также ледебуритную стали, которые имеют много общего с описываемой разновидностью технического железа. Если рассматривать структурный класс стали, то доэвтектоидный сплав будет относиться к эвтектоидам, но содержащим в составе легированные ферриты и перлиты. Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%

Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит

Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%. Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит.

Мартенсит

Три типа плоскостей наиболее плотной упаковки в мартенсите с периодической слоистой структурой, образующемся из исходной / 32 -фазы типа CsCI. Стрелка обозначает вектор смещения каждого слоя относительно слоя А, принятого за начало отсчета.| Шесть типов слоев наиболее плотной упаковки в мартенсите с периодической слоистой структурой, образующейся из исходной ftt – фазы типа Fe3A.  

Мартенсит со структурой ЗЯ или 9 Я, состоящий из трех плотноупа-кованных плоскостей А, В и С, образуется в ( 32-сплавах с исходной фазой типа CsCI. Однако мартенсит со структурой 2Н обнаруживается во всех сплавах.  

Мартенсит, который для сталей является пересыщенным твердым раствором углерода в а-железе, под влиянием температуры распадается – происходит выделение углерода из решетки о-же-леза.  

Мартенсит – структурная составляющая кристаллических твердых тел, возникающая в результате мартенситного превращения.  

Схемы основных видов термической обработки сталей.  

Мартенсит получается путем реализации только первого этапа вторичной кристаллизации и имеет характерное пластинчатое, под микроскопом – игольчатое, строение. Рост пластин путем сдвига происходит мгновенно со скоростью около 1000 м / с по бездиффузионному механизму, так как диффузионный переход атомов из кристаллов аустенита в мартенсит при низких температурах невозможен.  

Мартенсит имеет наибольший удельный объем по сравнению с другими структурными составляющими сталей и особенно с аустенитом. Увеличение удельного объема при образовании мартенсита приводит к возникновению при закалке больших внутренних напряжений, вызывающих деформацию изделий или даже появление трещин.  

Элементарная кристаллическая ячейка мартенсита ( а. мартенсит.  

Мартенсит – очень твердая и прочная структура. Он тверже и прочнее бейнита. Но пластические свойства его низки, особенно ударная вязкость. В мартенсите имеются высокие остаточные напряжения, возникшие вследствие увеличения удельного объема в результате превращений и не устраненные из-за низкой пластичности мартенсита.  

Мартенсит, имеющий после закалки кристаллическую решетку с тетрагональной элементарной ячейкой, при нагреве выше 80 С начинает превращаться в кубический. Как всякий пересыщенный раствор, мартенсит неустойчив. Он распадается при комнатной температуре, но скорость распада чрезвычайно мала ввиду малой тепловой подвижности атомов. При температуре выше 80 С подвижность атомов оказывается достаточной для того, чтобы углерод частично перешел из пересыщенного раствора в пластинки карбида толщиной всего в несколько атомных слоев за относительно небольшой промежуток времени. Это превращение происходит в интервале от 80 до 170 С и сопровождается уменьшением искажения кристаллической решетки мартенсита. Внутренние напряжения снижаются, уменьшается удельный объем мартенсита, размеры детали немного сокращаются. Твердость и прочность остаются неизменными, а пластические свойства несколько повышаются.  

Тетрагональная ячейка а-фазы в кристаллической решетке аустеннта.  

Мартенсит в стали обладает тетрагональной решеткой, по-видимому, даже при малом содержании углерода ( 0 1 %), если он образуется в условиях, при которых практически не реализуются диффузионные процессы. Но в малоуглеродистом мартенсите ( 0 5 % С) в результате диффузионных процессов тетрагональная решетка может перейти в решетку с кубической симметрией.  

Мартенсит без внутренних двойников наблюдался в малоуглеродистой стали ( где эти двойники обычно соседствуют с гексагональным е-мартенситом) и в марганцовистой, а также хромистой стали.  

Два способа нагрева под закалку.  

Мартенсит при закалке получается только при условии охлаждения со скоростью, превышающей определенную, так называемую критическую. Для каждой марки стали характерна своя критическая скорость.  

характеристики

При длительном отжиге или чрезвычайно медленном охлаждении метастабильный цементит распадается на железо и графит . Кристаллическая структура цементита является относительно сложной. В орторомбической элементарной ячейке имеется двенадцать атомов железа и четыре атома углерода , причем атомы углерода окружены восемью атомами железа относительно нерегулярным образом ( тригонально- призматическая двойная заглушка ). Цементит очень твердый ( = 800) и износостойкий, но хрупкий, поэтому его трудно пластически деформировать. Он имеет более низкую плотность , чем железо , и ниже его температуры Кюри 215 ° C ферромагнетика .

Зависимость молекулярного объема цементита от давления при комнатной температуре.

Поскольку углерод является одним из возможных легких компонентов в сплавах железа, составляющих ядра планет, свойства соединений железа с углеродом экспериментально исследуются даже при чрезвычайно высоких давлениях и / или температурах. На графике напротив показан молярный объем как функция давления при комнатной температуре для цементита как упрощенного модельного вещества для когенита.

Иглы первичного цементита

Обрабатываемость очень плохо. На практике цементит не поддается механической обработке (фрезерованию, сверлению и т. Д.). Он может встречаться в свободной форме или в составе перлита или бейнита и влиять на обрабатываемость этой структуры. Из-за своей высокой твердости он вызывает высокий . См. Также: Обрабатываемость стали .

Общие сведения о сплаве

Отличительным свойством стали является наличие в структуре специальных легированных примесей и углерода. Собственно, по содержанию углерода и определяют доэвтектоидный сплав

Здесь важно различать и классическую эвтектоидную, а также ледебуритную стали, которые имеют много общего с описываемой разновидностью технического железа. Если рассматривать структурный класс стали, то доэвтектоидный сплав будет относиться к эвтектоидам, но содержащим в составе легированные ферриты и перлиты. Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%

Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит

Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%. Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит.

Чистая форма

Цементит меняется с ферромагнитный к парамагнитный на своем Температура Кюри примерно 480 К.

Зависимость мольного объема цементита от давления при комнатной температуре.

Карбид природного железа (содержащий незначительное количество никеля и кобальта) встречается в железные метеориты и называется когенит в честь немецкого минералога Эмиль Коэн, который первым описал это. Поскольку углерод является одним из возможных второстепенных компонентов легких сплавов металлических ядер планет, свойства цементита (Fe3C) как простой заменитель когенита изучаются экспериментально. На рисунке показано поведение при сжатии при комнатной температуре.

Свободный цементит

Свободный цементит ( Fe3C), который образуется при недостаточном количестве кремния, слишком большом содержаний марганца и серы.  

Химический состав и характеристика пористых подшипников на бронзовой и железной основе.  

Структурно свободный цементит нежелателен.  

Структурно свободный цементит, X 500: а — до деформации, 6 — после деформации.  

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.  

Количество структурно свободного цементита. Включения структурно свободного цементита, расположенные по границам зерен феррита ( фиг. Скоагулированные и расположенные внутри зерен феррита включения структурно свободного цементита менее опасны. Шкала построена по возрастанию размеров включений цементита и по развитию распределения его в виде сетки или цепочки.  

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.  

Частицы структурно свободного цементита должны быть мелкими, по возможности равномерно рассеянными ( фиг. Мелкие частички цементита получаются при пониженных температурах смотки горячекатаной полосы в рулон, а крупные — при высоких, когда они успевают не — только выделиться из твердого раствора в феррите, но и достигнуть крупных размеров вследствие коагуляции и роста.  

Количество структурно свободного цементита в стали определяется баллами по эталонным образцам микроструктур.  

Кроме структурно свободного цементита, на границах ферритных зерен имеется еще третичный цементит. Помешать его выделению при конечной термической обработке нельзя, так как для этого листы для глубокой вытяжки нужно охлаждать медленно.  

Не допускается структурно свободный цементит. Эвтектический графит и феррит допускаются в виде отдельных мелких включений в количестве не более 5 % площади шлифа для каждого включения. Излом отливки должен иметь однородное мелкозернистое строение с матовым оттенком.  

SE) имеющийся в ней свободный цементит до конца растворится в аустените и структура станет однородной.  

В доэвтектоидных сталях нет структурно свободного цементита.  

В) Чугуны со структурно свободным цементитом относятся к белым чугунам. Феррит в них может появиться в результате отжига, но такой чугун не относится к ферритным.  

В низкоуглеродистой стали не допускается структурно свободный цементит. Он образуется в результате замедленного охлаждения после прокатки или термической обработки и, располагаясь по границам зерен, резко снижает пластические свойства. Это вызывает большой брак при холодной высадке.  

Первичный, вторичный и третичный цементит

По способу и области образования он подразделяется на три основных вида:

  • первичный;
  • вторичный;
  • третичный.

Образование первичного цементита наблюдается в процессе кристаллизации заэвтектического чугуна. В этот момент образуются кристаллы вытянутой формы. Они образовывают первичный карбид. Первичное образование может проявляться в доэвтектическом чугуне в составе ледебурита в процессе кристаллизации расплава. Проведенные исследования показали, что такая смесь железа и углерода присутствует не только в белом чугуне. Она может проявиться в сером чугуне после завершения операции так называемой графитизации.

Процесс образования вторичного вида наблюдается в основном при охлаждении аустенита. Это явление наблюдается при снижении температуры ниже 1147 °С. При такой температуре происходит снижение концентрации углерода в аустените. Освободившиеся атомы углерода вступают в новые связи, и образуется цементит, который называется вторичным. При дальнейшем снижении температуры до эвтектоидной продолжается его формирование. Даже при комнатной температуре он встречается в составе перлита. В этих условиях его можно обнаружить в заэвтектоидной стали. Он образовывается на границах зернистой структуры.

Процесс охлаждения феррита формирует так называемый третичный цементит. Данный вид достаточно сложно зафиксировать, и проводит дальнейшее наблюдение за его образованием. Эта проблема связана с появлением третичного цементита в небольших количествах. Исследования образования данной фракции показали, что он приобретает несколько форм: пластинки, прожилки или в форме иголок. Все эти элементы формируются в зёрнах феррита. Третичное образование достаточно сложно получить, потому что при повышении процентного содержания углерода третичный цементит соединяется с перлитом. При повышении скорости охлаждения содержание углерода сохраняется в растворе металла и образование третичной фракции прекращается. Явным признаком образования является результат постепенного старения феррита. В этом случае в содержании феррита изменяется концентрация углерода.

Из приведенного выше описания можно сделать следующие выводы:

  • первичная фракция образовывается в результате кристаллизации расплава;
  • вторичный – в результате последовательного охлаждения аустенита;
  • третичный – после охлаждения феррита.

В различных марках стали и чугуна цементит первичный обладает высокой вариативностью формы. Это могут быть пластины правильной формы полоски или образования в форме иголок. При проведении операции отжига он может принимать форму округлых образований. Как результат трансформируется в зернистый перлит.

Основные структуры

Сплав железа и углерода является основой стали и чугуна, которые называются железными сплавами, и это самые важные конструкционные материалы в технологии.

Структура и свойства сплава во многом зависят от характеристик основных компонентов и аддитивных элементов, а также характера их взаимодействия.

Чистое железо-серебристо-белый металл, тугоплавкий. Температура плавления железа составляет 1539°C. железо имеет 2 полиморфные модификации a и G.

При температурах ниже 910°C железо имеет объемно-центрированную кубическую решетку. Это изменение называется A-iron. а-железо-это температура до 768°С (точка Кюри) магнитно.

Когда утюг нагрет, тел-центризованная кубическая решетка 910°С поворачивает в сторон-центризованную кубическую решетку, и А-утюг поворачивает в г-утюг. г-железо присутствует при температуре 910-1392°с

Углерод-неметаллический элемент. Температура плавления углерода составляет 3500°С. углерод в природе существует в 2 полиморфных модификациях: Алмаз и графит.

В сплаве свободный углерод-железо углерод находится в форме графита. Кристаллическая структура графита слоистая. Его прочность и пластичность очень низки.

Углерод может растворяться в железе в жидком и твердом состоянии, образуя химические соединения-цементит может находиться в свободной форме в виде графита.

Структуры на диаграмме железо-углерод

Напомним о 2 кристаллических формах железа:

  • α-железо . Имеет объемноцентрированную кубическую (ОЦК ) решетку;
  • γ-железо . Имеет гранецентрированную кубическую (ГЦК ) решетку.


Кристаллическая решетка железа Полиморфное превращение одной формы в другую при проведении термообработки сталей

происходит при прохождении сплавами линии GSK.

Выделим 4 фазы в системе железо-углерод:

  1. Жидкая фаза. Концентрация углерода не ограничена;
  2. Феррит – это твёрдый раствор углерода в α-железе. Максимальная концентрация углерода – всего лишь 0,025% (точка P). При комнатной температуре – не выше 0,006%. Феррит мягок и пластичен.
  3. Аустенит – твёрдый раствор углерода в γ-железе. Максимальная концентрация углерода — 2,14 % (точка E). Аустенит имеет невысокую твёрдость, пластичен, не магнитится.
  4. Цементит — химическое соединение железа с углеродом (карбид железа, Fe3C). Концентрация углерода, соответственно, постоянная – 6,67 % углерода. Цементит очень твёрд, хрупок, непластичен.

В зависимости от условий образования выделяют:

  • первичный цементит (образуется из жидкости);
  • вторичный цементит (выделяется из аустенита вокруг его зерен);
  • третичный цементит (выделяется из феррита по границам его зерен);
  • эвтектоидный цементит (является составной частью перлита);
  • эвтектический цементит (является составной частью ледебурита).

Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:

  1. Перлит (эвтектоид ) – механическая смесь 2 фаз – пластинок/зерен феррита и цементита. Перлит образуется в результате перлитного превращения аустенита («свободного» или входящего в состав ледебурита) с концентрацией углерода 0,8% при прохождении ниже линии PSK:

А0,8→Ф0,025 + Ц6,67


Структура перлита. Ф — феррит, Ц — цементит

Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.

  1. Ледебурит (эвтектика ) – механическая смесь 2 фаз – пластинок/зерен аустенита и цементита. Ледебурит образуется из жидкой фазы с концентрацией углерода 4,3% при прохождении ниже линии ECF:

Ж4,3→А2,14 + Ц6,67

Структура ледебурита. Ц — цементит, А — аустенит.

Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.

При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита.

Прочие карбиды железа

Существуют и другие формы метастабильных карбидов железа, которые были обнаружены в отпущенной стали и в промышленном процессе Фишера-Тропша . К ним относятся карбид эпсилон (ε) , гексагональный плотноупакованный Fe 2–3 C, выделения в углеродистых сталях с содержанием углерода> 0,2%, отпущенные при 100–200 ° C. Нестехиометрический ε-карбид растворяется при температуре выше ~ 200 ° C, при этом начинают образовываться карбиды Хегга и цементит. Карбид Хегга , моноклинный Fe 5 C 2 , выделяется в закаленных инструментальных сталях, отпущенных при 200–300 ° C. Он также был естественным образом обнаружен в виде минерала Эдскоттит в метеорите Веддерберн. Определение характеристик различных карбидов железа вовсе не является тривиальной задачей, и часто дифракция рентгеновских лучей дополняется мессбауэровской спектроскопией .

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий