Область применения
Рычажные механизмы получили весьма широкое применение, что прежде всего можно связать с их преимуществами перед другими устройствами, которые устанавливаются для транспортировки грузов и иной передачи усилия
Рассматривая область применения следует уделить внимание следующим моментам:
- Чаще всего рычаг устанавливается для подъема груза. Он является неотъемлемым элементом достаточно большого количества различных устройств, которые приводятся в движение ручной силой.
- Встречаются в производственных цехах, в химической промышленности, в машиностроении и многих других отраслях.
- Область применения ограничивается типом применяемого материала при изготовлении основных частей, принципом действия, а также максимальной возможной нагрузкой, которая оказывается на рабочий орган.
Сегодня рычажные механизмы получили весьма широкое распространение, могут применяться при создании различного оборудования. При этом если важна экономия, то рычаг можно создать своими руками.
В заключение отметим, что провести самостоятельно проектирование рычага достаточно сложно. Это связано с необходимостью применения достаточно большого количества различных формул, построением графиков соответствия и многими другими моментами. Допущенная ошибка может стать причиной повреждения механизма на момент эксплуатации, существенного снижения показателя КПД и возникновения многих других проблем.
Статическое уравновешивание кривошипно-ползунного механизма
Во время перемещения звеньев механизма с изменяющимися скоростями (ускоренного движения) в них возникают инерционные силы и моменты. Их называют динамическими нагрузками. Такие нагрузки приводят к появлению вибраций, колеблющиеся детали излучают свои колебания в воздух, вызывая воздушный шум.
Динамические нагрузки приводят также к многократным деформациям деталей, их повышенному износу, накоплению усталости материала и преждевременному разрушению.
Шум и вибрация оказывают также негативное влияние на людей и точные механизмы, находящиеся рядом с источником. И, наконец, на возбуждение колебаний и излучение шума тратится энергия, это снижает КПД кривошипно-ползунного механизма.
Причины возникновения вибрации делятся на:
- силовые, колебания возмущаются периодическим приложением сил к объекту;
- кинематические, возмущение возникает за счет движения деталей;
- параметрические, возбуждение происходит за счет сил и моментов инерции.
Виброактивность делится на
- Внутреннюю, возникающую и распространяющуюся в пределах физических границ кривошипно-ползунного механизма. Она действует только на его детали и мало распространяется вовне.
- Внешнюю. Она действует на опоры механизма, его связи с другими частями общей конструкции, трансмиссию и далее. Основная причина, вызывающая такую виброактивность — неуравновешенность рычагов и звеньев.
Для устранения причин возникновения вибрации проводят статическое уравновешивание кривошипно-ползунного механизма. Механизм должен находиться в равновесии в состоянии покоя, при этом силы трения полагаются нулевыми.
Для этого вычисляют массы всех звеньев и строят график сил, действующих на них в состоянии покоя, прежде всего сил тяжести. Массы звеньев должны быть уравновешены с учетом длины рычагов (расстояния от центра вращения).
В ходе статического уравновешивания массы звеньев полагаются сосредоточенными в геометрическом центре звена.
Если общий центр масс системы совершает ускоренное движение, механизм считают неуравновешенным. Цель процедуры — достижение нулевого значения ускорения центра масс. Для этого к движущимся частям добавляют уравновешивающие массы, сводящие ускорение к нулю.
После статического уравновешивания наступает этап динамического уравновешивания кривошипно-ползунного механизма. При этом расчеты ведутся уже с учетом реальной пространственной конфигурации деталей.
В ходе производства реального изделия из-за дефектов материала, погрешностей отливки, механообработки и сборки возникают дополнительные разбалансировки звеньев. Для их устранения применяется балансировка кривошипно-ползунного механизма. Она заключается в:
- определении места дисбаланса с помощью средств вибродиагностики;
- передвижения и закрепления балансировочных грузов, предусмотренных конструкцией изделия;
- высверливание, выборка или наплавка необходимых масс материала в рассчитанных местах;
- повторной вибродиагностике.
Цикл операций повторяется до тех пор, пока подвижные части не будут удовлетворительно уравновешены.
Обзор основных видов механизмов – Кулачковые механизмы
Article Index |
---|
Обзор основных видов механизмов |
Кулачковые механизмы |
Фрикционные механизмы |
Зубчатые механизмы |
Формы зуба передач |
Механизмы с гибкими звеньями |
Клиновые и винтовые механизмы |
Механизмы с гидравлическими и пневманическими устройствами |
All Pages |
Page 2 of 8
Кулачковые механизмы
Широкое распространение в технике получили кулачковые механизмы. Простейший кулачковый механизм – трехзвенный, состоящий из кулачка, толкателя и стойки. Входным звеном чаще всего бывает кулачок. Кулачковые механизмы бывают как плоскими, так и пространственными.
Плоские кулачковые механизмы для удобства рассмотрения разобьем на механизмы в зависимости от движения выходного звена на два вида:
1.Кулачковый механизм с поступательно движущимся толкателем(ползуном).
2. Кулачковый механизм с поворачивающимся толкателем (коромыслом).
Пример первого кулачкового механизма показан на Рис.2.1. Кулачок 1, вращаясь с заданной угловой скоростью, действует на ролик 3 и заставляет толкатель 2 в виде ползуна двигаться в направляющих возвратно-поступательно.
На Рис.2.2 приведена схема
кулачкового механизма с поворачивающимся толкателем (коромыслом). Кулачок 1, вращаясь с заданной угловой скоростью ω1, действует на толкатель 2 и заставляет последний вращаться вокруг оси вращения А.
Рис.2.1 Механизм с поступательно- движущимся толкателем | Рис.2.2 Кулачковый механизм с поворачивающимся толкателем |
Кулачковые механизмы имеют разновидности в зависимости от геометрических форм элемента выходного (ведомого) звена и взаимного расположения толкателя и кулачка. Например, кулачковый механизм, показанный на Рис.2.1 может иметь разные виды ведомых звеньев (Рис.2.3).
Рис.2.3 Виды ведомых звеньев, применяемые для кулачковых механизмов с поступательно движущимся выходным звеном:
а) толкатель с острием; б) с плоскостью; в) толкатель с роликом;
г) толкатель со сферическим наконечником.
Кулачковые механизмы с поступательно движущимся ведомым звеном можно разделить на:
а) кулачковые механизмы с центральным толкателем, у которых направление движения толкателя совпадает с осью вращения кулачка (Рис.2.4);
б) кулачковые механизмы со смещенным толкателем (дезаксиальные), если ось толкателя отстоит на расстояние е – дезаксиал от оси вращения кулачка (Рис.2.5).
Рис.2.4 Кулачковый механизм | Рис.2.5 Кулачковый механизм со смещенным толкателем |
При работе кулачковых механизмов необходимо, чтобы было постоянное соприкосновение ведущего и ведомого звеньев. Это может быть обеспечено либо силовым замыканием, чаще всего с помощью пружин (Рис.2.6), либо геометрически, если выполнить профиль кулачка 1 в форме паза, боковые поверхности которого воздействуют на ролик 3 толкателя 2.
Рис.2.6 Кулачковый механизм с силовым замыканием | Рис.2.7 Кулачковый механизм с геометрическим замыканием |
Пазовый кулачок обеспечивает геометрическое замыкание высшей пары кулачкового механизма (Рис.2.7).
Все рассмотренные выше кулачковые механизмы плоские. Часто встречаются пространственные кулачковые механизмы, которые весьма разнообразны по конструктивному оформлению. Наиболее распространенными пространственными кулачковыми механизмами являются механизмы барабанного типа (Рис.2.8). Цилиндрический кулачок 1 с профильным пазом, обеспечивающим кинематическое замыкание высшей пары, вращается с постоянной угловой скоростью и через ролик 3 сообщает качательное движение толкателю 2, закон изменения которого зависит от очертания паза.
Рис.2.8 Пространственный кулачковый механизм барабанного типа
<< Prev – Next >>
Функции распредвала
Распредвал – элемент ГРМ (газораспределительного механизма). Он определяет порядок тактов мотора и синхронизирует открывание/закрывание клапанов, которые подают в цилиндры воздушно-топливную смесь и отводят отработанные газы.
Газораспределительный механизм работает по следующему принципу. В момент запуска двигателя стартер проворачивает коленчаты й вал . Распредвал приводится в движение при помощи цепи или ремня, посаженного на шкив коленвала. В цилиндре открывается впускной клапан, и в камеру сгорания поступает смесь бензина и воздуха. В этот же момент датчик коленвала подает импульс на катушку зажигания. В ней генерируется разряд, который идет на свечу зажигания .
К моменту, когда появляется искра, оба клапана в цилиндре закрыты, а топливная смесь сжата. Во время возгорания образуется энергия, и поршень перемещается вниз. Так коленвал проворачивается и приводит в движение распределительный вал. В этот момент он открывает выпускной клапан, через который выходят отработанные в процессе горения газы.
Распредвал всегда открывает нужный клапан на конкретный промежуток времени и на стандартную высоту. Благодаря своей форме этот элемент обеспечивает стабильный цикл смены тактов в моторе.
Подробно о фазах открытия и закрытия клапанов, а также об их настройках, показано в данном видео:
В зависимости от модификации двигателя в нем может стоять один или несколько распредвалов. В большинстве автомобилей эта деталь размещена в головке блока цилиндров. Она приводится в движение за счет вращения коленчатого вала. Эти два элемента соединяются при помощи ремня или цепи ГРМ.
Чаще всего одним распредвалом оснащены двс с рядным расположением цилиндров. Большинство таких двигателей имеет по два клапана на цилиндр (один впускной, а другой выпускной). Встречаются также модификации с тремя клапанами на цилиндр (два на впуск, один на выпуск). Двумя валами чаще комплектуются двигатели, в которых на один цилиндр приходится по 4 клапана. В оппозитных двс и с V-образной формой тоже устанавливается два распределительных вала.
Моторы с одним валом ГРМ имеют простую конструкцию, что приводит к снижению стоимости агрегата в процессе изготовления. Такие модификации легче обслуживать. Их всегда устанавливают на бюджетные автомобили.
На более дорогих модификациях двигателей некоторые производители устанавливают второй вал для снятия нагрузки на вал и в некоторых моделях ДВС для обеспечения сдвига фаз распределения газов. Чаще всего такая система встречается в автомобилях, которые должны отличаться спортивными характеристиками.
Распредвал всегда открывает клапан на конкретный промежуток времени. Чтобы улучшить эффективность мотора на повышенных оборотах, необходимо изменить этот интервал (двигателю нужно больше воздуха). Но при стандартной настройке газораспределительного механизма при повышенных оборотах коленвала впускной клапан закрывается раньше, чем в камеру поступит нужный объем воздуха.
В то же время, если установить спортивный распредвал (кулачки на дольше открывают впускные клапаны), на низких оборотах двигателя есть большая вероятность, что впускной клапан откроется еще до того, как закроется выпускной. Из-за этого часть смеси попадет в выхлопную систему. Как результат – потеря мощности на низких скоростях и повышение токсичности выхлопов.
Самая простая схема для достижения такого эффекта – установить распредвал с функцией проворачивания на определенный угол относительно коленвала. Этот механизм позволяет осуществить раннее и позднее закрытие/открытие впускных и выпускных клапанов. На оборотах до 3500 он будет находиться в одном положении, а когда этот порог преодолевается, вал немного проворачивается.
На сегодняшний день с целью повышения производительности силовых агрегатов разрабатываются электромагнитные и пневматические бескулачковые системы газораспределения. Пока такие модификации очень дорогие в производстве и обслуживании, поэтому их еще не устанавливают на серийные автомобили.
Помимо распределения тактов двигателя данная деталь приводит в движение дополнительное оборудование (зависит от модификации мотора), например, масляный и топливный насосы, а также вал трамблера.
Назначение и область применения
Кулачковый механизм превращает вращение в линейное перемещение малой амплитуды. На практике это короткое линейное движение используется для выполнения следующих операций:
- сцепление или расцепление частей механизма;
- открытие или закрытие клапана;
- возвратно- поступательно движение какого-либо исполнительного органа изделия;
- повторение исполнительным органом наперед заданной в конфигурации поверхности кулачка сложной пространственной траектории.
Эти операции находят применение в следующих устройствах и системах:
- управление клапанами двигателей внутреннего сгорания;
- топливные и масляные насосы;
- приводы гидравлических и пневматических тормозных систем;
- распределитель зажигания в устаревшем карбюраторном двигателе;
- привод перемены передач в трансмиссиях мотоциклов и другого двухтактного транспорта;
- швейные машины;
- музыкальные механизмы: механический орган, шарманка, шкатулка и т. п.;
- транспортно- технологические машины;
- таймеры с механическим приводом;
- сельскохозяйственные механизмы, комбайны, осуществляющие уборку и сортировку корнеплодов или злаков;
Кроме того, широчайшая область использования кулачковых пар лежит там, где требуется не погасить, а, наоборот, создать вибрацию. Они находят применение в вибромашинах, служащих для уплотнения грунта или бетонных полов в строительстве. Горная техника, используемая при добыче рудных материалов, также производит сортировку тонких фракций на вибростолах, приводимых в движение кулачковыми парами.
Еще одна важная сфера применения – точные измерительные приборы и средства механической и электромеханической автоматизации. Контактный манометр и многие другие прецизионные приборы широко используют кулачковые пары для передачи вращения стрелки на шток, замыкающий контактные группы.
Используются кулачковые устройства в малых и средних металлообрабатывающих станках для переключения передач, периодического перемещения рабочих органов.
В производственных технологических установках в химической, пищевой и фармацевтической промышленности устройства используются для дозированной подачи сыпучего сырья к месту дальнейшей переработки.
Несмотря на стремительное совершенствование электронных средств управления, старая проверенная кулачковая пара уверенно удерживает свои позиции там, где требуется многократно повторять однообразные движения с высокой точностью.
Примеры использования
Торцевые гаечные ключи и отвертки
Торцевые гаечные ключи, оснащенные храповым механизмом, ещё называют трещотками. В самом простом варианте конструкции в трещотку стовят по две собачки. Поворотом рычажка можно либо отворачивать гайку, либо её закручивать, не вынимая ключа на каждом обороте, как с обычным инструментом.
Торцевые гаечные ключи с храповым механизмом
Кабельные стяжки
Кабельные стяжки делают из пластика одной деталью. Собачка прижимается к зубчатой пластине силой упругости. После затягивания стяжка не ослабляется даже при очень большом усилии.
Храповой механизм кабельной стяжки
Противооткатные устройства
Изначально противооткатные устройства с храповым механизмом начали использовать на железной дороге в горах Пенсильвании, США, при перевозке угля примерно с 1846 года. Чтобы груженый состав по крутому склону не откатился назад в случае отказа двигателя паровоза, на вагонах устанавливались «собачки».
Позже эта схема нашла применение на американских горках, чтобы в случае отключения электричества поезд с любителями острых ощущений не покатился назад.
Противооткатное устройство тележки на американских горках
Лебедки
Лебедки – это механизм для перемещения предметов с помощью каната. Электрическую лебедку устанавливают во внедорожники, чтобы вытянуть из трясины застрявший автомобиль.
Чтобы натянутый трос не разматывался с барабана используют храповой механизм. Примеры его использования на ручных лебедках можно увидеть на этих фотографиях.
Храповой механизм в ручных лебедках
Обгонная муфта велосипеда
Обгонную муфту (англ. overrunning clutch) также называют муфтой свободного хода. Она позволяет предотвратить передачу крутящего момента от ведомого вала (колеса) к ведущему (на цепь и педали), если ведомый вал начинает вращаться быстрее. Например, после прекращения вращения педалей без муфты свободного хода колеса продолжали бы раскручивать цепь и педали, как это было в первых велосипедах. То же самое было бы при спуске с горки.
Впервые обгонную муфту с простейшим храповым механизмом запатентовал в 1869 году Уильям Ван Анден из Покипси, штат Нью-Йорк, США. В обгонной муфте Ван Андена храповик был встроен в ступицу переднего колеса велосипеда.
Примерная схема муфты свободного хода (обгонной муфты) с храповым механизмом Ван Андена
Почти все современные велосипеды – заднеприводные. Обгонная муфта в них встраивается в заднюю втулку или заднюю звездочку. Обгонные муфты с храповым механизмом издают характерный звук и их еще называют велотрещотками.
Пример работы муфты свободного ходаМуфта свободного хода с храповым механизмом в задней звездочке велосипеда
Обгонная муфта стартера автомобиля
Механизм свободного хода с храповиком используется в стартерах автомобилей как защитное устройство. Стартер – это механизм, который с помощью электромотора запускает двигатель внутреннего сгорания, вращая его коленвал через маховик.
Скорость вращения ведомого зубчатого колеса стартера невысокая – может быть около 3000 об/мин. После запуска двигатель на холостом ходу развивает около 1000 об/мин. Но передаточное отношения стартер-маховик из-за разности диаметров зубчатых колес может достигать значения 20:1. Т.е. запущенный двигатель на холостых оборотах может раскрутить электромотор стартера до 20 000 об/мин.
Чтобы стартер не вышел из строя после запуска двигателя на него ставят обгонную муфту.
Стартер автомобиля
Коробка передач автомобиля
В данном примере собачка храпового механизма используется для перевода автоматической коробки передач в режим парковки.
Храповик в автоматической коробке передач автомобиля
Как правильно установить толкатели для фасадов
Перед установкой следует уточнить, на какие петли производителем рекомендуется крепить сам фасад.
Сама капсула толкателя устанавливается в месте предполагаемого нажатия. Для выдвижных ящиков – максимально приближенно. Если ящики расположены один под другим, как в комоде, то в конструкции короба лучше предусмотреть специальные планки. Нажатие по бокам фасада для выталкивания ящика не всегда удобно.
Обычно в комплекте с толкателем идет инструкция с подробной схемой монтажа, для накладной и врезной установки.
Обратите внимание, что сама работа толкателя возможна только при наличии зазора между фасадом и корпусом мебели. То есть дверца шкафа или выдвижного ящика не должна плотно примыкать к коробу
Обычно зазор составляет 2-3 мм. Четырехшарнирные мебельные петли позволяют «выдвинуть» фасад за счет регулировочного винта. А вот направляющие выдвижных ящиков необходимо сразу прикручивать не так глубоко, как в стандартном случае (без отступа от края).
Облегчает установку толкателей фасада возможность регулировки длины. Она позволяет выставить оптимальную величину зазора простым поворотом самого толкателя.
Если в толкателе есть регулировка длины, подгонять зазор для корректной работы нажимного механизма путем регулировки петель и направляющих ящика не придется. И установка облегчается в разы.
Система открывания фасадов мебели от нажатия – один из способов сделать дверцы без ручек. Возможно, вам будет интересно узнать, как еще можно сделать шкафы без ручек.
Лучшие плоскостные (обводные) секаторы
С помощью плоскостных секаторов производят обрезку живых веток деревьев и кустарников толщиной в диапазоне от 20 до 25 мм.
Принцип действия обводного секатора аналогичен действию привычных ножниц: лезвия движутся навстречу друг другу в одной плоскости. Срез выполняется верхним изогнутым лезвием с односторонней заточкой, нижнее тупое лезвие необходимо для обеспечения упора со стороны срезаемой части растения.Для удобного пользования между ручками инструмента может быть установлена пружина или специальный раздвигающий механизм.
Fiskars 1000574 (с силовым приводом)
Инструмент от финляндского производителя оснащен силовым приводом, который облегчает садовые работы и увеличивает их производительность. Он поможет привести в порядок садовые культуры, затрачивая при этом минимальные усилия. Секатор рассчитан на максимальный размер реза 26 мм. Лезвия устройства выполнены из закаленной стали с тефлоновым покрытием. Конструкция секатора позволяет проводить замену лезвий при необходимости.
По отзывам потребителей, проводящих обрезку ветвей деревьев и кустарников секатором с силовым приводом, он имеет достоинства:
- С легкостью режет ветви, обеспечивая чистый срез без изъянов;
- Пригоден для использования представительницами слабого пола;
- Возможность подогнать под руку регулировкой расстояния между ручками;
- Имеет предохранительную защелку, страхующую инструмент от случайного раскрытия;
- В комплектацию входит пластиковый чехол, в котором удобно хранить секатор в несезонное время.
Недостатки:
PALISAD 60536
Секатор китайского производителя предназначен для срезки живых ветвей толщиной до 15 мм. Рукоятки покрыты двухкомпонентным пластиком, режущие лезвия произведены из инструментальной стали c тефлоновым покрытием, предохраняющим рабочую часть инструмента от коррозии. В исходное положение секатор приводит пружина ленточного типа. На корпусе расположена кнопка фиксатора, предупреждающего раскрытие секатора.
Покупатели в своих отзывах отметили достоинства садового инструмента:
- Удобные ручки выполнены из приятного на ощупь материала, благодаря которому секатор надежно держится в руке;
- Хорошее качество реза, ветви диаметром 1-1,5 см перекусывает с легкостью;
- Устойчивая режущая кромка;
- Продолжительный срок службы (при соблюдении правил хранения и эксплуатации служат без нареканий);
- Хорошее сочетание цены и качества.
Недостатки:
Слабое звено – фиксатор. Случаются проблемы в его работе: туговат или же может выйти из строя.
Центроинструмент 0703
Инструмент российского бренда, может производиться в Тайване или на отечественных предприятиях. Предназначен для среза молодых побегов толщиной до 20 мм. Ручки покрыты резиной, рабочая часть инструмента – из углеродистой стали с тефлоновым покрытием. Секатор оснащен фиксатором для безопасного хранения.
В отзывах покупатели отметили его преимущества:
- Способен резать довольно толстые живые ветви;
- Качество реза на уровне дорогостоящих моделей;
- Не устает рука во время работы благодаря небольшому весу (0,21 кг);
- Простой и надежный фиксатор.
Недостатки:
Слабое место инструмента – пружина. После интенсивного использования бывают случаи выхода этого элемента из строя.
Достоинства кулачковых механизмов
Основным преимуществом устройства считается его способность реализовать весьма сложные пространственные траектории движения толкателя. Кроме того, движение можно строго регулировать по временным фазам, зависящим от угла поворота ведущего вала. При этом конструкция его весьма проста в работе и обслуживании.
Еще одним важным преимуществом конструкции над, скажем, электронными системами управления с электрическим или гидравлическим приводом, является ее исключительная надежность
Это очень важно в тех конструкциях, где требуется достичь точного многократного повторения одних и тех же движений, таких, как двигатель или швейная машинка
Диагностика и замена гидрокомпенсаторов
При выходе из строя одного или нескольких ГК появляется стук, похожий на клапанный. Этот звук хорошо распространяется в металле, поэтому для определения неисправного гидрокомпенсатора применяют фонендоскоп. Аналог этого прибора можно изготовить и самостоятельно из стального стержня длиной около 700 мм и диаметром 5-6 мм. На один торец стержня крепится жестяная банка из-под пива с обрезанным верхом, а на его середину — деревянная ручка. Приложив ухо к банке и поочередно приставляя свободный торец «фонендоскопа» к головке блока в зоне каждого компенсатора, на слух определяют неисправный по усиленному стуку. «Подозрительный» ГК следует демонтировать и проверить.
Извлечь ГК из седла можно с помощью магнита. Если это не удается (ГК «прикипел» или заклинил), его извлекают съемником, предварительно приварив к нему тягу с крюком. Некоторые гидрокомпенсаторы поддаются разборке, что позволяет определить степень износа внутренних деталей. Разборку следует производить с особой аккуратностью, чтобы не повредить поверхности сопряженных элементов.
Гидроопоры разбираются после снятия стопорного кольца; внутренние детали гидротолкателя «вытряхивают», аккуратно постукивая его корпусом о металлическую поверхность. Загрязненный компенсатор промывают в ацетоне или в другом растворителе.
Визуальный осмотр позволяет обнаружить внешние повреждения торцевой поверхности гидрокомпенсатора, подвергающейся нагрузкам (выбоины, царапины или задиры). В процессе эксплуатации на ней может образоваться даже углубление.
Существует еще один простой и действенный способ контроля состояния демонтированного ГК: после заполнения маслом он не должен сжиматься при прикладывании усилия рук. В противном случае он неисправен и подлежит замене. Работоспособный ГК, сжатый в струбцине, оказывает значительное сопротивление и незначительно уменьшает длину только через 20-30 сек.