Как пользоваться пирометром определение теплопотерь

Dacha.news

19.02.2016

Инструмент

Можно ли с помощью недорогих пирометров точно измерить температуру? Если нет, то какова погрешность и от чего она будет зависеть?

Пирометр – прибор (в данном случае мы говорим о распространенных бытовых инфракрасных моделях), измеряющий уровень электромагнитного излучения предмета в определенном спектре и на основе его интенсивности определяющий температуру.

От чего зависит точность измерений пирометром

1. От излучательной способности поверхности тела. У идеальной модели черного тела она равна 1. У идеального зеркала – 0. Основная масса тел имеет излучательную способность в диапазоне от 0,85 до 0,95. Потому дешевые модели пирометров, где нет возможности ручного указания излучательной способности, обычно настроены на наиболее типичное значение 0,95.

Значения излучательной способности берут из различных справочников и таблиц, но все они являются предметом споров и могут применяться лишь с оговорками. Вот примеры значений излучательной способности некоторых материалов:

МатериалКоэффициент излучения
Алюминиевые сплавыот 0,1 до 0,25
Алюминий (полированный)0,05
Асбест0,95
Асфальт0,93
Бетонот 0,7 до 0,85
Бумага и картонот 0,8 до 0,9
Вода0,97
Кварц (необработанный)0,9
Красный кирпич (не шлифованный)от 0,75 до 0,9
Лакированные изделия0,9
Лакированный алюминий0,5
Латунь (неполированная)0,2
Латунь (полированная)0,1
Лесоматериалы (различные)от 0,8 до 0,9
Лед0,97
Луженая сталь0,1
Масляная краска (любого цвета)0,95
Медь (полированная)0,05
Медь листовая0,8
Мрамор0,9
Нержавеющая сталь (полированная)0,1
Нержавеющая сталь (разная)от 0,2 до 0,6
Обожженная глина0,75
Пластмассы (различные, твердые)от 0,8 до 0,95
Полиэтиленовая пленкаот 0,2 до 0,3
Расплавленная мягкая стальот 0,3 до 0,4
Резина (гладкая)0,9
Резина (негладкая)0,98
Свинец (оксидированный)0,6
Свинец (чистый)0,1
Серебро (полированное)0,05
Сталь0,6
Стекло0,92
Уголь (графит)0,75
Уголь (сажа)0,95
Цинк (окисленный)0,1
Чугун (необработанный) ржавый0,95
Чугун (полированный)0,2
Штукатурка0,9
Эмаль (любого цвета)0,9

Реальная погрешность измерений недорогими пирометрами, вносимая неточным указанием излучательной способности, обычно лежит в диапазоне от 3 до 20% при ошибке указания от 10% до 30% соответственно.

Там, где нужно провести максимально точные измерения, поверхность сначала покрывают специальными лаками с достоверно известной излучательной способностью.

2. От температуры тела. Излучательная способность тел меняется в зависимости от температуры и на диапазонах от 300 до 900 градусов ошибка может быть в 1,5 и более раз. Более того, пирометры рассматриваемого нами класса не способны делать точных измерений объектов с температурой 500 и более градусов.

3. От температуры окружающей среды. В качестве датчиков в пирометрах чаще всего используются полупроводниковые элементы – болометры, фотодиоды, пироэлектрики, термоэлементы. Их характеристики напрямую зависят от окружающей температуры. Если усреднять, то изменение их температуры на каждые 10°С будет давать дополнительную погрешность в 1%.

4. От расстояния. Поскольку инфракрасные пирометры снабжены оптической системой, то площадь, с которой снимаются показания излучения для определения температуры, напрямую зависит от расстояния до объекта.

(наиболее точные пирометры можно купить здесь: conrad.ru/…/infrakrasnye_pirometry_/)

И тут важно, чтобы область, с которой снимаются показания, не выходила за края объекта. Для каждой модели пирометра значения площади от расстояния будет свое, и оно обязательно указывается в инструкции

Многие модели среднего и высшего ценовых диапазонов имеют лазерные указатели в виде одного, двух или более лучей, которые обозначают границы пятна.

Рекомендации по использованию пирометров

— Большинство недорогих пирометров не пригодно для измерения температур полированных металлических поверхностей или просто светлых металлов. Использовать с оговорками можно лишь те, у которых имеется возможность ручного указания значений излучательной способности материалов. — Любые предметы или частицы (пар, дым, пыль), попадающие в область измерения будут влиять на результаты. — Нельзя измерить температуру объектов через прозрачные предметы (стекло, пленку), поскольку по факту будет измерена температура стекла и т.д.

Вам также может быть интересно: — Тест недорогого пирометра GM320

ликбезпирометр

Оценка статьи: (3 голосов, среднее: 4,67 из 5)

Отчет при энергоаудите тепловизором

Почему же люди начинают обращаться за такой услугой? Самая главная причина – им кажется, что они платят слишком много денег за газ, за электричество из-за высоких теплопотерь.

И требуется понять, где эти теплопотери, чтобы исправить “косяки” строителей или наоборот предъявить их в качестве претензии. По поводу последнего, вам придется обращаться не к частнику, а в профессиональную компанию, которая выдаст официальное заключение.

Просто отчет с тепловизионными картинками от некоего мастера, прострелявшего тепловизором ваши стены, пол и крышу, никто всерьез не воспримет. Да и вы толком не будете знать, что же делать с этими данными, и насколько они точны.

Чаще всего, за этой услугой обращаются люди не только что заселившиеся в новые дома, а те, которые уже некоторое время в них пожили. То есть, вы фактически видите, что у вас высокие расходы, в доме холодно и никак невозможно его толком прогреть.

Приглашаете человека с тепловизором. А он при этом он, обязательно столкнется с некоторыми проблемами, про которые может и умолчать.

Ведущие производители

Приборы, выпускаемые американской компанией Raytek, отличаются высокой надежностью и способны измерить температуру в пределах от -50 до +3000°С. Внушительные показатели, не правда ли? Устройства применяются в любой отрасли промышленности, будь то металлургия или химическое производство.

Немецкий гигант Optris производит высококачественные технологичные устройства для дистанционного измерения температуры. Особенностью приборов этой фирмы, безусловно, является точность. Особенно интересны и универсальны модификации стационарного исполнения. Благодаря своим особенностям и широкому набору настроек, пирометры Optris заслужили небывалую популярность.

Отлично зарекомендовали себя устройства немецкого концерна Testo. Фирма специализируется в основном на выпуске ручных моделей. Они нашли широкое применение в быту, строительстве и научной сфере деятельности. Инженеры Testo сделали измерители компактными и снабдили их широким набором опций.

Применение пирометров в быту, медицине, на промышленных объектах не составляет труда. Благодаря широким возможностям ИК-термометров стало легко проводить своевременную техническую проверку машин и оборудования, следить за производственными процессами, предупреждать аварии. Хотя они имеют свои недостатки, но очень помогают специалистам в их работе.

Таблица коэффициентов излучения разных материалов

В большинстве случаев, нельзя просто так направить луч, нажать курок и тут же получить правильный результат измерения на табло. На блестящих нагретых предметах все пирометры начинают сильно врать.

И зависит эта погрешность напрямую от коэффициента излучения. Вот подробная таблица коэффициентов излучения различных материалов. Этими данными необходимо пользоваться каждый раз при замерах пирометрами.

Чтобы повысить точность измерений, стоит покупать более дорогие модели с возможностью выставления этих коэфф. внутри программных настроек.

Замерить температуру материалов, которых нет в таблице, можно двумя способами. Использовать “мишень” с известным коэфф., накладывая ее на измеряемый объект.

Или сначала определить контактным термометром температуру поверхности, и затем меняя значения в приборе, добиться примерного совпадения.

Технологии подобные тепловизионному обследованию

В сравнении с подобными технологиями (ультразвуковыми и рентгенологическими) теполовизионный метод абсолютно безопасный для здоровья людей и материалов конструкций. Огромным преимуществом среди аналогов является бесконтактность и большая дистанционность. Инфракрасная камера поможет диагностировать целый ряд проблем. Энергетические аудиторы и изоляционные подрядчики используют инфракрасные камеры для диагностики проблем жилых помещений и промышленных зданий. Не вскрывая стены, пол или потолки для осмотра, один обученный специалист может просто использовать тепловизор, чтобы найти:

  • утечки воздуха;
  • вторжение влаги;
  • повышенные температурные расходы;
  • тепловые мосты.

Не говоря уже о выявлении дефектов системы отопления как скрытой, так и наружной. Тепловизор узнают под разными названиями, в том числе: инфракрасная (ИК) камера, термографический сканер и тепловизионный прибор. Изображение, созданное путем такой ИК термокамерой, называется термограмма. Обученный пользователь устройства называется специалист по термографии.

Принцип работы пирометра

Основными частями инфракрасного устройства являются: линза, ИК-приемник и дисплей температурных показаний. Инфракрасное излучение, идущее от горячего объекта фокусируется линзой и подается на ИК-приемник.


Упрощенное изображение ИК-датчика и горячего объекта ИК-приемник ИК-температурного датчика может представлять собой полупроводниковый материал, термопару или термобатарею (группа термопар, соединенных вместе последовательно). Схема термобатареи

Когда ИК-приемник температурного датчика нагревается, то генерируется напряжение (имеется ввиду, что это термопара или термобатарея) или меняется сопротивление (если речь идет о полупроводниковом материале). Изменение величины напряжения и сопротивления затем преобразуется в соответствующие температурные показания и отображаются на шкале прибора. Если температура объекта уменьшается, то его инфракрасное излучение уменьшается и в данном случае меняющаяся величина сигнала сопротивления и напряжения, посылаемого в приемник будет отображена на шкале как уменьшение температуры.

Для того, чтобы определить температуру объекта бесконтактный цифровой термометр направляется на объект и нажимается спусковой механизм. Показания температуры отображаются на дисплее прибора. С помощью кнопки на приборе можно отображать оказания либо по шкале Цельсия, либо по шкале Фаренгейта.

Методы устранения утечки тепла в доме

После получения результатов энергоаудита, можно приступать к ликвидации тепловых потерь. Существует несколько основных направлений:

  1. Основным методом борьбы с утечкой тепла в доме является качественная термоизоляция. Для этих целей используются различные минеральные утеплители, как рулонного, так и листового типа. Наиболее распространенным из них является минеральная вата. Также используются и другие теплоизоляционные материалы, такие как пенопласт и вспененные полистирол.
  2. Для уменьшения потерь тепла через крышу нередко оборудуются мансарды, которые не только увеличивают жилое пространство, но и значительно сокращает поступление теплого воздуха к крыше.
  3. Сокращает потери тепла и эффективная пароизоляция, препятствующая образованию конденсата.
  4. Теплоизоляция наружных коммуникаций и трубопроводов также оказывает существенное влияние на повышение энергоэффективности здания. Наиболее прогрессивным методом изоляции трубопроводов на сегодняшний день считается использование пенополистирольного бандажа, обеспечивающего минимальный выброс тепла в атмосферу.
  5. Следующим этапом в сокращении утечки тепла в доме является утепление окон. Для обеспечения герметичного притвора створок применяется трубчатый силиконовый уплотнитель диаметром от 3 до 8 мм. Его аккуратно укладывают в специальный паз, фрезерованный по периметру рамы. Качество устройства откосов также оказывает влияние на энергоэффективность постройки, использование теплоизоляции при отделке способствует сокращению потерь тепла. 
  6. Тепловые потери возможны и через «мостики холода»–это участки стены, имеющие меньшее тепловое сопротивление, чем основная поверхность. Избежать утечки тепла в доме позволит грамотная кладка стен и соблюдение технологических требований. В частности, недопустимо устройство железобетонных армированных перекрытий вровень с основной кладкой. Пример «мостика холода» можно увидеть на приведенной термограмме. Насыщенный фиолетовый цвет свидетельствует о некачественном выполнении стыков стен, что приводит к проникновению холодного воздуха в помещение.

Пирометры. Разновидности и сферы применения пирометров

Немного из истории развития пирометрии

С середины 60-х годов прошлого столетия началось интенсивное развитие бесконтактных портативных пирометров, так как именно в это время были сделаны важные физические открытия, которые позволили начать производство малогабаритных пирометров с высокими характеристиками, широко применяемых на различных производствах. Изначально, когда Pieter van Musschenbroeck изобрел один из первых пирометров, они предназначались для измерения температуры визуально, по яркости и цвету сильно нагретого объекта. На сегодняшний день определение пирометра несколько расширилось, современные приборы правильнее называть инфракрасные радиометры, сейчас они измеряют достаточно низкие температуры от 0°C и ниже. Стремительное развитие технологий, позволило значительно расширить границы измерения температур твердых и жидких тел.

Лазерные пирометры и принцип их действия

Пирометр — это прибор для точного бесконтактного измерения температуры непрозрачных тел, являющийся одним из видов термометров, принцип действия которого заключается в измерении силы теплового излучения, которое исходит от объекта в диапазонне видимого света и инфракрасного излучения. Пирометры заключают в себе сложнейшие оптические и электронные системы, которые позволяют решить практически любую теплоизмерительную проблему в достаточно широком диапазоне температур, от -50 до 3000°С. Принцип действия инфракрасного пирометра заключается в измерении абсолютного значения излучаемой энергии одной волны в инфракрасном спектре. Такой метод измерения, на сегодняшний день, является относительно не дорогим. Данные пирометры могут производить любые измерения температуры, с нужной дистанции, но имееют ограничения связанные с диаметром исследуемого объекта и прозрачностью окружающей среды, что и является их уязвимой частью. Высокая чувствительность к загрязненной среде, ограничивает использование пирометра в влажных, запыленных, задымленных средах. Также далеко не все пирометры пригодны для измерения поверхности тел, которые во время технологического процесса переходят из одного физического состояния в другое, например из жидкого в твердое.

Основные виды пирометров

Пирометры спектрального диапазона можно разделить на несколько основных видов. Яркостные пирометры позволяют без применения специальных устройств определить температуру тела, путем сравнения цвета эталонной нити с цветом нагретого тела. Радиационные пирометры измеряют температуру с помощью пересчитанного показателя мощности теплового излучения. Мультиспектральные пирометры определяют температуру объекта путем сравнения теплового излучения в различных спектрах.

Сферы применения пирометра

Измерение температуры пирометром выгодно отличается от обычных термометров. Измерения можно производить без остановки технического процесса или производства на безопасном расстоянии в местах повышенных температур. Так как пирометрические измерения очевидно имеют ряд преимуществ, сфера применения достаточно широка. Пирометры активно применяются на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки, также в строительстве для нахождения теплопотерь в жилых и промышленных зданиях. В лабораторных условиях, при исследованиях, где контактный метод нарушает чистоту эксперимента. В сфере теплоэнергетики, где нужно точно и быстро измерять температуру на участках малодоступных для другого вида измерения. Конроль температуры букс и ответственных узлов грузовых и пассажирских вагонов в сфере железнодорожного транспорта. Быстрое определение температуры любых непрозрачных тел, которые находятся в движении, поддержание и регулирование противопожарной безопасности, контроль и проверка систем кондиционирования, вентиляции и отопления.

Выбирайте пирометры Testo

На сегодняшний день лидером на рынке теплового измерительного оборудования, а в частности пирометров и термометров, является всемирноизвестная крупная немецкая компания Testo. Практически на всех рынках, где Testo присутствует со своими продуктами, компания занимает не только лидирующие позиции, но и стабильно удерживает 1-2 места по продажам среди производителей аналогичного оборудования. Успех компании достигается ставкой на научно-технические разработки, на которые ежегодно выделяется около 12% всего оборота компании. Таким образом ассортимент и качество продукции дает Testo явное превосходство над большинством аналогичных компаний.

Ссылки к статье: Каталог пирометров

Количество просмотров статьи: 8475

Разница показаний при замерах нагретых и холодных тел

К примеру, если у вас предмет имеет температуру окружающей среды, то излучает и отражает он приблизительно одну и ту же температуру. Но если его при этом нагреть, то сразу же появится погрешность, существенно искажающая реальные данные.

Чтобы удостоверится во всем вышесказанном, можете сами провести простейший эксперимент. Возьмите блестящую кастрюлю и какую-нибудь книжку.

Далее проведите замеры на них одним и тем же пирометром. Чтобы повысить точность эксперимента, старайтесь делать замеры в одной точке.

Результаты у вас точно не будут одинаковыми, правда сильной разницы вы не увидите. Если перепроверить это дело контактным термометром, то отклонения будут составлять всего 2-3 градуса.

Но это все будет справедливо только при комнатной температуре предметов. А что будет, если в кастрюлю залить горячую воду?

Измерения в этом случае тут же пойдут в разнос.


Температура «горячей» кастрюли


Реальная температура с верным коэффициентом

Это говорит о том, что температура нагретых гладких блестящих поверхностей, просто так пирометром не измеряется.

Поэтому, когда в видеороликах показывают, насколько элементарно бесконтактным измерителем определить температуру батарей или контактов, не сильно доверяйте данной рекламе.

Типы и классификация

В зависимости от функционального признака, выделяют несколько классификаций пирометров.

По существенному методу, используемому в работе:

  • Инфракрасные;
  • Оптические.

Оптические пирометры подразделяются на:

  • Яркостные;
  • Цветовые, или мультиспектральные.

По образу прицеливания различают устройства с оптическим или лазерным прицелами.

По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.

По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).

Основываясь на возможном диапазоне измерений выделяют:

  • низкотемпературные (-35…-30 °С);
  • высокотемпературные (+400 °С и выше).

Как устроен и работает тепловизор

То, как отражаются результаты исследования — главное, чем отличается пирометр от тепловизора. Отображение тепловой диаграммы — картинки, окрашенной в различные цвета в соответствии со степенью температурного излучения — становится возможным благодаря технологиям, похожим на те, которые используются в нынешних видеокамерах.

Прибор оборудуется объективом, сделанным из германия. Этот дорогой металл придает устройству необходимую чувствительность и долговечность. Попавшее в фокус объектива излучение передается на специальную матрицу, которая преобразует невидимые инфракрасные лучи в электромагнитный сигнал. Сигнал обрабатывается в электронном модуле и передается на жидкокристаллический дисплей в виде тепловой диаграммы.

Таким образом на экране отображается снимаемый объект, окрашенный в цвета, соответствующие его температуре. Благодаря различным оттенкам можно определить места сквозняков, области, где теплоизоляционный материал намок, порвался или был прогрызен мышами. Картинка отображает щели, трещины, мостики холода. На ней можно заметить даже теплокровных вредителей. Такое свойство прибора позволяет использовать его в спасательных операциях, поскольку он отображает людей, находящихся под завалами, либо скрытые очаги возгорания при пожарах, когда оценить ситуацию визуально мешает дымовая завеса. С его помощью также выслеживают диких животных охотники.

Типы и классификация

В зависимости от функционального признака, выделяют несколько классификаций пирометров.

По существенному методу, используемому в работе:

Оптические пирометры подразделяются на:

  • Яркостные;
  • Цветовые, или мультиспектральные.

По образу прицеливания различают устройства с оптическим или лазерным прицелами.

По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.

По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).

Основываясь на возможном диапазоне измерений выделяют:

  • низкотемпературные (-35…-30 °С);
  • высокотемпературные (+400 °С и выше).

Основные источники погрешности пирометров [ править | править код ]

Самыми важными характеристиками пирометра, определяющими точность измерения температуры, являются оптическое разрешение и настройка степени черноты объекта .

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром, к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать пирометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Коэффициент эмиссии ε (коэффициент излучения, степень черноты) – способность материала отражать падающее излучение. Данный показатель важен при измерении температуры поверхности с помощью инфракрасного термометра (пирометра). Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно чёрного тела при той же температуре. Он может принимать значения от 0 до 1 . Применение неверного коэффициента эмиссии — один из основных источников возникновения погрешности измерений для всех пирометрических методов измерения температуры. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075.

Где применяется пирометр

Однако область его применения только этими отраслями не ограничивается. С его помощью замеряют температуру движущихся частей механизмов. Например, чтобы выяснить греется подшипник на двигателе или нет.

Выявляют перепады температур на смежных поверхностях – цилиндры компрессора в холодильных установках, или отдельные детали внутри автомобиля.

Допустим у вас греется двигатель по неизвестной причине и вам нужно выяснить почему. Для этого пирометром сначала замеряете температуру на выходном патрубке термостата и сравниваете ее с температурой радиатора.

Если разница очень большая, тогда скорее всего виноват термостат.

Еще один из вариантов применения – измерение температуры раскаленного металла для его правильной обработки.

Если это делать классическими термометрами, то вы потеряете драгоценное время на нагрев самой термопары. А беспроводным термокрасным пирометром, все это занимает буквально мгновение.

Вот сводная графическая миниатюра и расшифровка возможностей и областей применения пирометров:

Расшифровка и особенности

Тепловизор или пирометр

С вышеизложенными проблемами сталкиваются все мастера, но как правило не вводят в курс дела заказчиков. В итоге, в 90% случаев на разных объектах получается одна и та же тепловизионная картинка.

У вас есть окна и фундамент. Где-то в районе фундамента и окон температура будет немного выше, причем всегда.

А вам то какой толк от этого? Если это изначально было понятно и без тепловизора. Тепловизор прибор оптический. Он не видит что творится внутри ваших ограждающих конструкций.

Вы можете купить хороший качественный пирометр и самостоятельно провести такое же тепловизионное обследование, с той лишь разницей, что у вас не будет видеоэкрана.

На экране у вас есть стена, где можно передвигать точки измерения и визуально выбирать то место, которое вас интересует.

Для того, чтобы сделать то же самое при помощи пирометра, придется нарисовать эту же стену на листке бумаги и прострелять точки вручную. После чего, перенести температуру на рисунок.

Разница между пирометром за 10-15 тыс. рублей и тепловизором за 500 тысяч заключается только в том, что во втором случае не нужно ничего рисовать.

Поэтому задумайтесь, может и нет никакого смысла покупать такой дорогостоящий прибор для подобных обследований.

История [ править | править код ]

Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).

Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий