Кривошипно-ползунный механизм: устройство, принцип работы, применение

Устройство и принцип действия одинарного механизма смыкания

Подобный агрегат представлен сочетанием нескольких конструктивных элементов, за счет которых обеспечивается передача и увеличение усилия. Основными деталями можно назвать:

  1. Две неподвижные траверсы. Их соединение проводится при помощи цилиндрической колонны.
  2. Крепление проводится при помощи гаек и контргаек, которые существенно повышают прочность конструкции.
  3. Передача усилия осуществляется за счет гидравлического цилиндра. Его крепление проводится при помощи шарниров.
  4. Также есть серьги.

Принцип действия механизма достаточно сложный. Характеризуется он следующим образом:

  1. Смещение поршня вниз в гидравлическом блоке происходит выпрямление серьги, она совмещается с горизонтальной осью.
  2. В результате совмещения осей происходит соединение шарниров.
  3. Шарниры монтируются так, чтобы при контакте расстояние между ними было меньше, чем суммарная длина обеих серег.
  4. Выпрямление серег происходит за счет распорного усилия.

Приведенная выше информация определяет то, что главным недостатком конструкции становятся нескомпенсированные боковые усилия, которая возникают из-за нагрузки втулок и колонн. Именно поэтому рекомендуется использовать подобный вариант исполнения только в случае передачи небольшого усилия.

Область применения

Кулисные механизмы находят применение в тех устройствах и установках, где требуется преобразовать вращение или качание в продольно- поступательное перемещение или сделать обратное преобразование.

Наиболее широко они используются в таких металлообрабатывающих станках, как строгальные и долбежные

Важное преимущество кулисно-рычажного механизма, заключается в его способности обеспечивать высокую скорость движения на обратном ходе. Это дает возможность существенно повысить общую производительность оборудование и его энергоэффективность, сократив время, затрачиваемое на непроизводительные, холостые движения рабочих органов

Здесь же находит применение кулисный механизм с регулируемой длиной ползуна. Это позволяет наилучшим образом настаивать кинематическую схему исходя из длины заготовки.

Механизм конхоидального типа применяется в легком колесном транспорте, приводимом в действие ножной мускульной силой человека- так называемом шагоходе. Человек, управляющий машиной, имитируя шаги, поочередно нажимает на педали механизма, закрепленные на оси с одного конца. Кулисная пара преобразует качательное движение во вращение приводного вала, передаваемое далее цепным или карданным приводом на ведущее колесо.

В аналоговых вычислительных машинах широко применялись так называемые синусные и тангенсные кулисные механизмы. Для визуализации различных функции в них применяются ползунные и двухкулисные схемы. Такие механизмы использовались в том числе в системах сопровождения целей и наведения вооружений. Их отличительной чертой являлась исключительная надежность и устойчивость к неблагоприятным воздействиям внешней среды (особенно- электромагнитных импульсов) на фоне достаточной для решения поставленных задач точности. С развитием программных и аппаратных средств цифровой техники область применения механических аналоговых вычислителей сильно сократилась.

Еще одна важная сфера применения кулисных пар- устройства, в которых требуется обеспечить равенство угловых скоростей кулис при сохранении угла между ними. Муфты, в которых допускается неполная соосность валов, системы питания автомобильных двигателей, устройство реверса на паровом двигателе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Далеко не все автомобилисты представляют, как называется та или иная деталь в их автомобиле. При этом речь идет не только о «запрятанных» в двигатель механизмах, но и об устройствах, с которыми они взаимодействуют буквально каждый день. Одной из таких деталей является кулиса КПП.

Классификация рычажных механизмов

Все рычажные механизмы классифицируются по достаточно большому количеству различных признаков. При этом общими свойствами можно назвать высокий показатель КПД и повышенную нагрузочную способность, простоту функционирования. Простейшие рычажные механизмы встречаются в самых различных областях промышленности. Основная классификация проводится по принципу действия:

  1. Четырехзвенники.
  2. Кривошипно-шатунный.
  3. Кулисные механизмы.

Приведенные примеры могут устанавливаться для достижения самых различных целей.

Большое распространение получил коленно-рычажный механизм по причине простоты конструкции и длительного эксплуатационного срока.

Типы передач для поступательного движения

Встречается довольно большое количество различных устройств, которые могут применяться для преобразования передаваемого усилия. Большое распространение получили следующие варианты:

  1. Кривошипно-шатунные может применяться для преобразования вращения в возвратно-поступательное движение и наоборот. В качестве основных элементов применяется кривошипный вал, ползун, шатун и специальный элемент кривошипа. Для расчета момента и других параметров могут использоваться различные формулы. В качестве основного элемента также могут использовать коленчатый вал, который имеет одну или несколько ступеней. Они получили весьма широкое распространение, к примеру, двигатели или насосы, сельскохозяйственная техника. При изготовлении основных деталей, как правило, применяется сталь с высокой коррозионной стойкостью.
  2. Кулисные конструкции получили весьма широкое распространение, так как усилие передается без шатуна. В подобном случае ползун напоминает кулису, в которой делается специальное отверстие. На момент вращения кривошипного вала кулиса двигается вправо и налево. В некоторых случаях вместе кулисы применяется стержень с насаженной втулкой. Для обеспечения контакта применяется прижимная пружина. Существенно повысить качество работы устройства можно за счет установки ролика на конце устройства.
  3. Кулачковые варианты исполнения применяются для преобразования вращательного перемещения в возвратно-поступательное. Основным элементом конструкции можно назвать кулачки, а также стержень, криволинейный диск. Для направления положения стержня устанавливается втулка, которая характеризуется весьма высокой точностью позиционирования. Снизить степень трения поверхности можно за счет ролика. В некоторых случаях вместо стержня устанавливается касающийся рычаг. Основные параметры могут быть рассчитаны самостоятельно. Механизм возвратно-поступательного движения рассматриваемого типа применяется в самых различных случаях, к примеру, в механизированном оборудовании.
  4. Шарнирно-рычажные устройства устанавливаются в том случае, если нужно сменить направление движение в какой-либо части устройства. Примером можно назвать ситуация, когда вертикальное перемещение следует перенаправлять в горизонтальное. Кроме этого, в некоторых случаях нужно провести увеличение или уменьшение хода.

Приведенная выше информация указывает на то, что встречается просто огромное количество различных вариантов исполнения механизмов. Выбор проводится по самым различным критериям, которые должны учитываться.

Назначение и область применения

Кулачковый механизм превращает вращение в линейное перемещение малой амплитуды. На практике это короткое линейное движение используется для выполнения следующих операций:

  • сцепление или расцепление частей механизма;
  • открытие или закрытие клапана;
  • возвратно- поступательно движение какого-либо исполнительного органа изделия;
  • повторение исполнительным органом наперед заданной в конфигурации поверхности кулачка сложной пространственной траектории.

Эти операции находят применение в следующих устройствах и системах:

  • управление клапанами двигателей внутреннего сгорания;
  • топливные и масляные насосы;
  • приводы гидравлических и пневматических тормозных систем;
  • распределитель зажигания в устаревшем карбюраторном двигателе;
  • привод перемены передач в трансмиссиях мотоциклов и другого двухтактного транспорта;
  • швейные машины;
  • музыкальные механизмы: механический орган, шарманка, шкатулка и т. п.;
  • транспортно- технологические машины;
  • таймеры с механическим приводом;
  • сельскохозяйственные механизмы, комбайны, осуществляющие уборку и сортировку корнеплодов или злаков;

Кроме того, широчайшая область использования кулачковых пар лежит там, где требуется не погасить, а, наоборот, создать вибрацию. Они находят применение в вибромашинах, служащих для уплотнения грунта или бетонных полов в строительстве. Горная техника, используемая при добыче рудных материалов, также производит сортировку тонких фракций на вибростолах, приводимых в движение кулачковыми парами.

Еще одна важная сфера применения – точные измерительные приборы и средства механической и электромеханической автоматизации. Контактный манометр и многие другие прецизионные приборы широко используют кулачковые пары для передачи вращения стрелки на шток, замыкающий контактные группы.

Используются кулачковые устройства в малых и средних металлообрабатывающих станках для переключения передач, периодического перемещения рабочих органов.

В производственных технологических установках в химической, пищевой и фармацевтической промышленности устройства используются для дозированной подачи сыпучего сырья к месту дальнейшей переработки.

Несмотря на стремительное совершенствование электронных средств управления, старая проверенная кулачковая пара уверенно удерживает свои позиции там, где требуется многократно повторять однообразные движения с высокой точностью.

Область применения

Несмотря в высокой потребности устройства, которое предназначено для преобразования постоянного вращения в прерывистое, применение мальтийского механизма не столь обширно. Это можно связать прежде всего с относительно низкой точностью. Это определяет следующее:

  1. Как и ранее, сегодня не применяют механизмы для создания киносъемочного оборудования. Исключением можно назвать производство оборудования, которое отвечает за смены положения осветительного оборудования.
  2. Довольно часто мальтийский крест применяется в случае производства различного станочного оборудования. Он требуется для поворота стала под определенным углом, за счет чего повышается функциональность устройства.
  3. Больше распространение механизм получил в сфере производства оборудования, где имеются радиальные пазы.

Не стоит забывать о том, что при ускорении вращения барабана есть вероятность износа пальца. Именно поэтому нужно проводить периодическое обслуживание для продления срока службы.

В заключение отметим, что проще приобрести уже готовый вариант исполнения мальтийского механизма. Это связано со сложностями проведения расчетов и непосредственного производства. Стоимость подобного продукта относительно невысокая, интеграция может проводится самым различным образом.

Не движущиеся части КШМ

Не движущиеся части КШМ: блок цилиндров, головка блока цилиндров и прокладки между блоками.

Не движущиеся части КШМ

Блок цилиндров — базовая деталь КШМ поршневого ДВС. В нем находятся посадочные отверстия для установки коленчатого вала. Он является остовом двигателя, в котором различными способами монтируются остальные его агрегаты и узлы.

Блок цилиндров подвергается большим температурным нагрузкам до 2000 °С. Различные места блока нагреваются по-разному. В результате по-разному деформируются. Что приводит к большим температурным усилиям, которые вкупе с большим давлением (до 11 МПа) создают большие разрывающие усилия. Поэтому изготавливают блоки цилиндров из высокопрочного чугуна и из алюминиевых сплавов.

Наиболее используемым металлом для производства блока цилиндров является чугун, так как он обладает оптимальным соотношением цена-качество. Высокая прочность и низкая стоимость.

Алюминий обладает большим коэффициентом теплового расширения, что создает проблемы. Кроме того, относительно низкие механические качества тоже ограничивают применение его в производстве блока цилиндров.

Внутри блока имеются каналы для подвода масла к трущимся частям. Также делают каналы для жидкости, которая охлаждает блок.

Головка цилиндров является не менее важной деталью. Она также трудится в условиях большого жара — до 2500 ° С

Причем нагрев различных частей неравномерный. С одной стороны, деталь омывается охлаждающей жидкостью, с другой нагревается, что вызывает большие деформации.

Главное требование к головке цилиндров — прочность, достаточная для сопротивления разрывающим силам, противостоящая деформации от механических воздействий и изгибающих температурных напряжений.

Головки цилиндров делают из высокопрочного чугуна, а также из алюминиевого сплава. Выбор металла зависит от типа мотора. Карбюраторные нуждаются в быстром отводе тепла, так как в них сжимается горючая смесь. Поэтому для них головки цилиндров производят их алюминиевого сплава. Дизеля сжимают воздух. Для них головки цилиндров делают из чугуна.

Маятник Капицы

Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.

Петр Леонидович Капица

Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.

Владимир Игоревич Арнольд

Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:

«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий  вертикально маятник на базе швейной машинки».

Демонстрация динамической стабилизации перевернутого маятника с помощью электробритвы

У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.

Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.

А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.

Видео:

  1. GetAClass. Маятник Капицы 
  2. Маятник Капицы: диалог академика Арнольда и Капицы, вывод формулы

Разновидности механизма

В продаже встречаются самые различные фрикционные храповые механизмы. Они могут применяться для реализации самых различных задач. Среди особенностей проводимой классификации отметим следующие моменты:

  1. Профилированная поверхность часто изготавливается в виде барабана или рейки.
  2. Реечный вариант исполнения встречается крайне редко, так как функциональность устройства существенно снижается. Барабанные фрикционные храповые механизмы встречаются намного чаще по причине компактности и других свойств.
  3. Профиль основы также классифицируется по большому количеству признаков. Чаще всего встречаются радиальные, прямоугольные и пологе варианты исполнения. Радиальные получили широкое распространение, так как они компактные и просты в установке.

В большинстве случаев зуб имеет классическую форму, за счет чего обеспечивается надежность работы.

Проектирование (производство) кулисного механизма

Несмотря на кажущуюся простоту устройств кулисного механизма, для того, чтобы он работал эффективно, требуется провести большую работу по его расчету и проектированию. При этом рассматриваются следующие основные аспекты:

  • производительность и КПД;
  • себестоимость производства и эксплуатации;
  • отказоустойчивость и межремонтный ресурс;
  • точность действия;
  • безопасность.

Учитывая сложность взаимовлияния этих аспектов друг на друга, расчет кривошипно-кулисного механизма представляет из себя многоступенчатую итеративную задачу.

В ходе проектирования проводят следующие виды расчета и моделирования:

  • расчет кинематики;
  • динамический расчет;
  • статический расчет.

Обычно проектирование и расчет разбивается на следующие этапы:

  • Определение требуемого закона движения расчетно-аналитическим или графоаналитическим методом.
  • Кинематическое моделирование. Выполнение общего плана, скоростного плана, графическое моделирование моментов инерции, графика энерго-массовых зависимостей.
  • Силовое моделирование. Построение плана ускорений, эпюр сил, приложенных к звеньям в нескольких положения.
  • Синтез кулисно-рычажного механизма. Построение графиков перемещения, скорости, ускорений графико-дифференциальным методом. расчет динамики кулисного механизма и его динамический синтез.
  • Проверка на соответствие закону движения. Окончательное профилирование кулис.
  • Проверка на соблюдение норм безопасности и охраны труда.
  • Выпуск чертежей.

Расчет и проектирование кулисного механизма долгое время представлял собой весьма трудоемкий процесс, требовавший большого сосредоточения и внимательности от конструктора. В последнее время развитие средств вычислительной техники и программных продуктов семейства CAD-CAE существенно облегчил все рутинные операции по расчету. Конструктору достаточно выбрать подходящую кинематическую пару или звено из поставляемых производителем программ библиотек и задать их параметры на трехмерной модели. Существуют модули, на которых достаточно отобразить графически закон движения, и система сама подберет и предложит на выбор несколько вариантов кинематической его реализации.

Возвратно-поступательный механизм своими руками

Существенно сэкономить можно путем создания возвратно-поступательного механизма своими руками. В некоторых случаях его делают из дрели, в других для передачи вращающего крутящего момента используется электрический двигатель.

Особенностями назовем нижеприведенные моменты:

  1. Большинство конструкций самостоятельно изготовить не получается, так как требуемые детали характеризуются высокой сложностью. Примером можно назвать сочетание кривошипного вала и шестерни.
  2. Во всех случаях должны проводится расчеты, так как в противном случае обеспечить требуемые параметры не получается.
  3. Изготовить конструкцию рассматриваемого типа можно только при наличии специального оборудования. Если устройство сделано своими силами, то его реальные параметры от расчетных могут существенно отличаться.

В целом можно сказать, что рассматриваемая задача довольно сложна в исполнении. Именно поэтому работу должны проводить исключительно профессионалы, которые могут провести сложные расчеты, а также изготовить требуемые детали.

Разновидности механизма

В продаже встречаются самые различные фрикционные храповые механизмы. Они могут применяться для реализации самых различных задач. Среди особенностей проводимой классификации отметим следующие моменты:

  1. Профилированная поверхность часто изготавливается в виде барабана или рейки.
  2. Реечный вариант исполнения встречается крайне редко, так как функциональность устройства существенно снижается. Барабанные фрикционные храповые механизмы встречаются намного чаще по причине компактности и других свойств.
  3. Профиль основы также классифицируется по большому количеству признаков. Чаще всего встречаются радиальные, прямоугольные и пологе варианты исполнения. Радиальные получили широкое распространение, так как они компактные и просты в установке.

В большинстве случаев зуб имеет классическую форму, за счет чего обеспечивается надежность работы.

Область применения

Рычажные механизмы получили весьма широкое применение, что прежде всего можно связать с их преимуществами перед другими устройствами, которые устанавливаются для транспортировки грузов и иной передачи усилия

Рассматривая область применения следует уделить внимание следующим моментам:

  1. Чаще всего рычаг устанавливается для подъема груза. Он является неотъемлемым элементом достаточно большого количества различных устройств, которые приводятся в движение ручной силой.
  2. Встречаются в производственных цехах, в химической промышленности, в машиностроении и многих других отраслях.
  3. Область применения ограничивается типом применяемого материала при изготовлении основных частей, принципом действия, а также максимальной возможной нагрузкой, которая оказывается на рабочий орган.

Сегодня рычажные механизмы получили весьма широкое распространение, могут применяться при создании различного оборудования. При этом если важна экономия, то рычаг можно создать своими руками.

В заключение отметим, что провести самостоятельно проектирование рычага достаточно сложно. Это связано с необходимостью применения достаточно большого количества различных формул, построением графиков соответствия и многими другими моментами. Допущенная ошибка может стать причиной повреждения механизма на момент эксплуатации, существенного снижения показателя КПД и возникновения многих других проблем.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий