Солнечные батареи для частного дома: характеристики
Для частного дома, оптимальным вариантом будут солнечные батареи выполненные на основе кремния. Конечно, есть и другие виды, изготовленные из редких дорогих материалов с более хорошими характеристиками. Но они практически не используются в бытовой сфере, из-за высокой стоимостью и длительным сроком окупаемости. Поэтому их затрагивать мы сегодня не будем.
Монокристаллические солнечные батареи
Монокристаллические солнечные батареи отличаются тёмно-синим цветом внешней поверхности. Этот оттенок достигнут за счёт использования в основе высококачественного и чистого кремния.
Монокристаллические солнечные батареи для частного дома, обладают рядом положительных характеристик:
- В первую очередь это высокий КПД с показателем 20-25%.
- Во вторых, панели имеют не большие размеры с относительно высокой мощностью. Если сравнивать с поликристаллическими солнечными батареями.
- Заявленный срок службы таких изделий не меньше 30 лет, при соблюдении правил эксплуатации.
Недостатков здесь не так и много, но их стоит упомянуть:
- В первую очередь, это высокая стоимость монокристаллических солнечных батарей и соответственно длительный период окупаемости.
- Повышенная чувствительность к пыли. Загрязнённая поверхность не принимает, а рассеивает свет по сторонам, соответственно показатель КПД существенно снижается.
Завышенная стоимость монокристаллических солнечных батарей, объясняется уникальным расположением элементов кремния. Кристаллы расположены под определённым углом и соответственно могут принимать солнечные лучи только перпендикулярного направления относительно поверхности батареи. Поэтому монокристаллические батареи поставляются с дополнительным оборудованием, которое автоматически регулирует угол наклона панелей в течение дня.
Из-за сложной конструкции и необходимости в постоянно прямом солнечном свете, монокристаллические батареи устанавливаются на открытой или высокой местности.
Поликристаллические солнечные батареи
Поликристаллические солнечные батареи отличаются неравномерным синим оттенком из-за использования кремния среднего качества. В данном случае кристаллы располагаются под разным углом, соответственно КПД поликристаллических солнечных батарей ниже чем у монокристаллических.
Так же стоит отметить преимущества поликристаллических солнечных батарей:
- В первую очередь это высокий КПД при рассеянных солнечных лучах.
- Возможность монтажа на любую плоскую поверхность без дополнительного поворотного механизма.
- Относительно не высокая стоимость, по сравнению с предыдущим вариантом.
- Довольно продолжительный период эксплуатации, не меньше 15 лет.
Давайте вместе рассмотрим недостатки поликристаллических солнечных батарей для частного дома:
- Не высокий уровень КПД, максимум 15%.
- Довольно объёмные и тяжёлые панели с довольно не высокой мощностью.
Если проанализировать российский рынок, то поликристаллические солнечные батареи завоевали большую популярность. Скорей всего это обусловлено простотой конструкции и не высокой стоимостью.
Аморфные солнечные батареи
Аморфные солнечные батареи отличаются от предыдущих моделей как по составу так и методу изготовления. В данном варианте кремнии наносится на поверхность панелей тонким сплошным слоем и покрывается защитной плёнкой. Такой способ изготовления мало затратный и соответственно уровень эффективности довольно низкий. Уровень КПД у данных моделей не превышает 10%.
Единственное преимущество аморфных солнечных батарей, в том что они изготавливаются и на гибком основании тоже. Что позволяет их устанавливать на кровлю сложной формы. Но такие варианты на сегодня стоят довольно дорого при не высокой мощности.
Принцип работы
Первый прототип солнечной батареи применялся дачниками еще в прошлом столетии – летний душ. Брали емкость, например, ванну, окрашивали ее в черный, и заполняли водой. В течение дня вода грелась, а вечером дачник принимал теплый душ.
Панели обычно ставят на крышах, и они преобразуют 90% солнечного излучения в энергию следующим образом:
Принцип работы солнечной батареи.
- Солнечный свет (фотоны) падает на поверхность панели.
- Сталкиваясь с поверхностью полупроводника, фотоны отдают энергию его электронам.
- Электроны, заряженные дополнительной энергией, в следствие удара выбиваются из полупроводника и выходят за защитный слой.
- Отрицательно заряженные электроны идут к n-проводнику из p-проводника, а положительные – обратно. Чтобы переход произошел, в проводниках есть электрические поля, которые впоследствии повышают разность и силу зарядов.
Виды солнечных батарей и их предназначение
В настоящее время используется несколько разновидностей солнечных батарей. Все они отличаются длительным сроком эксплуатации, который зачастую превышает 30 лет. Это достигается за счет отсутствия в конструкции механических компонентов и расходных частей.
Наибольшее распространение сегодня получили три вида фотоэлементов:
- Монокристаллические;
- Поликристаллические;
- Тонкопленочные;
- Аморфные.
Самым распространенным видом являются поликристаллические панели, которые отличаются оптимальным соотношением цены и эффективности. В большинстве случаев их КПД достигает 12-13 %. Эти батареи отличаются кристаллической структурой и синим цветом. Монокристаллические солнечные панели являются более эффективными, так как их КПД достигает 15-16%. Однако, с учетом стоимости одного ватта мощности, их использовании обходиться дороже.
Монокристаллические и поликристаллические батареи имеют схожие функции:
- освещение жилых домов, хозяйств, тепличных комплексов;
- освещение садовой, парковой зоны, улиц;
- обеспечение электроэнергией медицинские и телекоммуникационные приборы;
- энергоснабжение систем подачи и очистки воды;
- подзарядка ноутбуков, мобильных телефонов.
Тонкопленочные обладают самым низким КПД, который не превышает 12%. В то же время, за счет низкой цены фотоэлементов, которые входят в конструкцию, один ватт мощности электроэнергии здесь обходиться дешевле, чем в остальных батареях. К тому же, тонкопленочные панели занимают в 2-3 раза большую площадь, чем моно- и поликристаллические. Поэтому, их лучше использовать для питания крупных систем мощностью более 10 кВт. Интересное: Солнечные батареи на 5 кВт.
Спецификация потребителей
Заполненную таблицу используют и при дальнейших расчетах. Прежде всего, для составления спецификации. В первой ее графе проставляют порядковые номера, а во второй прописывают наименования приемников электроэнергии. Сначала вносят в эту колонку спецификации электроприборы, находящиеся в прихожей.
Далее перечисляют по порядку все, что находится в следующих помещениях.
Второй этаж и помещения над ним, если такие имеются, описывают в таком же порядке, взяв за исходную точку лестницу. Освещение двора и лестничных пролетов также подлежит включению в спецификацию.
Синхронно со второй заполняют и третью колонку, указывая в ней напротив каждой единицы домашней техники ее мощность. В столбцах 4 – 27 отображают часы суток и подчеркивают их горизонтальными линиями. Под этой линией вписывают значения мощности, такие же как и в третьей графе.
После заполнения всех часовых колонок, построчно подсчитывают, сколько времени в сутки работал прибор. Результаты заносят в 28 колонку в соответствующий квадрат. Так, продвигаясь постепенно, высчитывают электропотребление потребителей, входящих в перечень, за каждые сутки.
Фиксируют эти величины в 29 столбце. Когда в спецификации не останется ни одной свободной колонки и строки, выполняют итоговые расчеты. Знаменатели часовых колонок суммируют, чтобы узнать нагрузки, приходящиеся на каждый час.
Чтобы определить общее среднесуточное значение, складывают суточные величины электропотребления каждого прибора, продвигаясь сверху вниз. Допустим, есть телевизор, потребляющий 30 Вт и работающий в среднем 5 часов в сутки, три лампы, потребляющие по 15 Вт за каждый час при 6 часовой работе ежедневно и холодильник — 600 Вт на протяжении 24 часов.
Такой фактор, как собственное потребление проектируемой гелиосистемы этот расчет не предусматривает. Поправку на него учитывает вспомогательный коэффициент, применяемый на следующем этапе расчета.
Способы монтажа бытовых гелиоустановок
В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули
При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут
Для северо-восточных он составляет 180 градусов.
Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов
Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов
На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
- кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
- стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
- приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.
Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.
Окупаемость и срок эксплуатации
Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.
По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.
Как подключить
Если не стоит задача обеспечить электричеством весь дом, то можно обойтись простой схемой. Солнечная панель + аккумулятор + контролер заряда, соединённые клеммами. Аккумулятор накапливают электроэнергию, а от него можно пользоваться зарядкой телефона, наладить освещение или подключить устройства, работающие от постоянных 12 В. Способ примитивный, но рабочий.
Когда есть необходимость запитать домашние устройства напряжением 220 В, в цепь добавляется преобразователь постоянных 12 или 24 В, выдаваемых панелью, в переменные 220 В.
На практике реализуются два типа подключения:
- Последовательный;
- Параллельный.
Последовательное соединение дает более высокое напряжение.
Если необходим более высокий ток, панели подключаются параллельно.
Можно повысить сразу и ток и напряжение. Для этого часть панелей соединяются последовательно, а другая часть параллельно.
При этом оба режима гарантируют более высокую мощность. Но если для работы домашней электросети не хватает мощности надо добавить количество панелей.
Фиксация элементов по временной схеме
Если рассматривать дачный вариант, когда вся работа только по выходным, удобнее переносной вариант. Панели должны легко разбираться, чтобы потом их спрятать или увезти с собой. В этом у солнечных электростанций преимущества и недостатки перед другими решениями.
Фиксация панелей по постоянной схеме
Если для размещения солнечных панелей предполагается использовать крышу строения, то надо учесть материал перекрытия.
- Перекрытия из металла. Для монтажа потребуется сквозное сверление.
- Шифер. Не рекомендуется для монтажа ввиду хрупкости покрытия.
- ПВХ или ЭПДМ. Монтаж производится на стыках листов.
Особенности монтажа
Есть определенные правила монтажа, которых нужно придерживаться:
Угол наклона
Важно чтобы панели как можно большую часть дня были под падающими лучами солнца.
Затемнение. При смене траектории солнца соседние панели не должны создавать тень
Для этого важно сохранить необходимое расстояние между элементами.
Обзор модулей, не использующих кремний
Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.
Перечислим основные преимущества:
- Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
- Фотоэлементы стабильны даже при температурах до 150 °C.
- Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.
Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.
Преимущества и недостатки использования солнечной батареи
К преимуществам использования солнечной батареи относят:
- Экономическую выгоду. Электроэнергия, поставляемая от энергии солнца, бесплатная;
- Экологическая безопасность. Работа солнечной батареи не связана с выбросом вредных веществ в атмосферу;
- Установка системы солнечной батареи является быстро окупаемой;
- Простота эксплуатации и установки.
К недостаткам относят:
- Дороговизна установки;
- Маленькие фотоэлементы не обеспечивают всех потребностей в электроэнергии одной семьи;
- Эффективность их работы зависит от многих факторов, таких как:
- Погодных условий;
- Температуры на улице и степени нагрева солнечной батареи;
- Грамотного выбора всех комплектующих для обеспечения требуемых параметров;
- Мощности потока света;
- Ориентации солнечной батареи к положению Солнца;
- Чистоты панелей.
Гибкие солнечные батареи
Очень удобными являются гибкие панели, которые легко сворачиваются в рулон, словно обычная бумага. Хотя стоимость их выше, чем твердотельных аналогов, они на рынке заняли свою нишу. В основном они пользуются спросом у туристов и путешественников, которым в условиях отсутствия электрификации необходимо заряжать мобильные гаджеты. Главным производителем гибких батарей, работающих от солнечной энергии, является компания Sun Charger, которая, к слову, недавно обновила свой модельный ряд моделями 34 Вт и 9Вт.
T_3Fq3YnxMk
Первая модель подходит для питания планшетов, сотовых телефонов, видеокамер, цифровых фотоаппаратов, GPS, гелевых аккумуляторов 6 и 12 вольт, т.е. она может в условиях похода обеспечить потребности нескольких человек.
SunCharger SC-9/14 — батарея в сложенном виде
Она же — в раскрытом виде
Особенности батареи: компактная складывающая конструкция, работающая в диапазоне температур от -50 до +70 градусов, вес которой всего 420 граммов, снабжена антибликовым покрытием, встроенным светодиодом, люверсами для крепления. Выходной разъем круглый (5.5 мм / 2.1 мм.).
Характеристики электрические: рабочее выходное напряжение 13,5 В (стандартное 12В), без нагрузки – 19В; рабочий выходной ток – 0,65 А; габариты в сложенном и развернутом виде — 20.5х15х3 см и 50х41.5х0.4 см; мощность выходная – 8,6 Вт.
Выходной разъём SunCharger SC-9/14
Вторая модель SunCharger SC-34/18 на сегодняшний день является в линейке гибких солнечных батарей самой мощной. Разработана она специально для универсальных накопителей (ноутбуков), имеющих на входе зарядки, как правило, 17-19 вольт. Максимальная мощность – 18В. К накопителям она подключается напрямую, что обеспечивает идеальное согласование. Понятно, что для менее «прожорливых» накопителей она также подходит, в том числе для двенадцати вольтовых свинцовых аккумуляторов, используемых в автомобилях.
Солнечная батарея выдает 18 В в точке своей максимальной мощности и напрямую подключается к этим накопителям. Таким образом, она «идеально» с ними согласована.
Естественно, эта батарея подходит и для зарядки менее прожорливых потребителей. Как известно, мощности мало не бывает. А также спокойно заряжает 12 В свинцовые аккумуляторы, в том числе, и автомобильные (через несколько часов зарядки уже можно завести машину). Толщина ее 4 см (т.е. стала чуть больше), но получилась батарея даже немного компактнее, чем обычные батареи на 12 В.
Солнечная гибкая батарея (модель SunCharger SC-34/18)
Достигнуто это за счет более тонкой ткани, используемой в ее производстве и ламинированных фотоэлементов большей площади.
Эта же батарея в раскрытом виде
Помимо особенностей, характерных для предыдущей модели, здесь имеются на выходе помимо круглого разъема, еще «мама» и «папа».
Электрические характеристики: мощность выходная, как понятно из маркировки, 34 Вт; рабочий выходной ток – 1.9 А; габариты 40х18х4 см (в сложенном виде) и 40х18х4 см (в раскрытом). Напряжение на выходе – 18 В и 26 В (без нагрузки). Вес, конечно, намного больше – 1,7 кг.
Экономные солнечные генераторы: принцип работы
Для труднодоступных районов с перебойным обеспечением электроэнергией солнечные генераторы становятся спасением комфортного проживания. С помощью него можно решить проблемы энергоресурсов и обеспечить автономное энергообеспечение. В основном бытовые генераторы рассчитаны на 220 В. Устройства оснащены дисплеем, который отображает сообщение о работе батарей. Устанавливаются приборы на участках с большим поступлением солнечных лучей: крыша дома, стены здания, открытая местность.
Такой прибор сможет обеспечить работу бытового оборудования: холодильника, стиральной машины, зарядки компьютерных систем, работы отопительных приборов, электроинструментов и циркулярных насосов. Бесперебойная работа гарантирована на 10 – 12 часов.
Достоинства системы заключаются:
- В автономности;
- Не зависимости от центрального снабжения;
- Мобильности;
- Бесшумной работе;
- Экологической безопасности;
- Длительном сроке эксплуатации;
- Компактности;
- Возможности работать на непроветриваемых участках.
Единственным минусом является стоимость устройства, которая в последствии окупает затраты на электроэнергию.
Комплектация гелиоэлектростанции
Чтобы правильно подобрать комплектующие для своей электростанции, необходимо определить количество приборов и их мощность. Для наглядности лучше рассмотреть конкретный пример: есть дача, находящаяся в пригороде Рязани, в которой проживают, начиная с марта и по сентябрь.
В комплектацию солнечных батарей входят: солнечные панели, инвертор, крепеж, дополнительные материалы (кабели, автоматы и т.д.) Среднесуточное потребление равно 10 000 Вт/ч, Нагрузка — в среднем 500 Вт, Максимальная нагрузка — 1000 Вт. Подсчитаем пиковую нагрузку, увеличив максимальную на 25%: 1000 х 1,25 = 1250 Вт.
Напряжение
Как правило, панели выпускаются с выходным напряжением 12 В. Но для заряда аккумуляторов необходимо иметь в системе напряжение выше, чем из рабочее, да и преобразование из постоянного в переменное выгоднее по КПД производить с более высоких значений.
Какое выходное напряжение на Ваших солнечных панелях?
12 В / 24 В36 В / 48 В
Поэтому принята стандартная практика использовать напряжения:
- 12 В для систем с потреблением на более 1 кВт.
- 24 В или 36 В – при потреблении до 5 кВт.
- 48 В – при мощности свыше 5 кВт.
Для получения таких напряжений используют последовательное включение панелей (наборов панелей).
Из чего сделаны
Чтобы изучить устройство солнечной батареи, нужно разобраться в основных разновидностях, так как технология производства имеет существенные различия в зависимости от используемого сырья:
- Батареи CdTe. Теллурид кадмия применяется при изготовлении пленочных модулей. Слоя в несколько сотен микрометров хватает для того, чтобы получить КПД порядка 11% или немного выше. Это откровенно низкий показатель, зато в пересчета на 1 Ватт мощности себестоимость электроэнергии получается как минимум на 30% дешевле, чем у традиционных вариантов из кремния. При том, что данная разновидность намного тоньше и легче.
- Тип CIGS. Аббревиатура обозначает, что в состав входят медь, индий, галлий и селен. Получается полупроводник, который также наносится небольшим слоем, но в отличие от первого варианта тут эффективность на порядок выше и составляет 15%.
- Типы GaAs и InP отличает возможность нанесения тонкого слоя в 5-6 мкм, при этом КПД будет составлять около 20%. Это новое слово в технологиях добычи электроэнергии из солнечного света. Благодаря высоким рабочим температурам батареи могут сильно нагреваться без потери эксплуатационных характеристики. Но из-за того, что при производстве используются редкоземельные материалы, себестоимость этого типа высока.
- Батареи с квантовыми точками (QDSC). В них в качестве поглощающего материала для преобразования солнечной энергии используются квантовые точки вместо традиционных объемных материалов. За счет особенностей настройки запрещенных зон можно делать многопереходные модули, поглощающие солнечную энергию более эффективно.
- Аморфный кремний наносится методом испарения и имеет неоднородную структуру. Он не отличается высокими показателями КПД, но однородная поверхность очень хорошо поглощает даже рассеянный свет.
- Поликристаллические варианты изготавливаются путем плавления кремния и его охлаждения при определенных условиях, чтобы получить однонаправленные кристаллы. Одно из самых распространенных решений благодаря дешевизне производства и неплохим показателям КПД.
- Монокристаллические элементы состоят из цельных кристаллов, разрезанных на тонкие пластинки и легированных фосфором. Самое долговечное решение, у которого низкие показатели деградации и срок службы, составляющий как минимум 30 лет, но чаще всего больше на 10-15 лет.
Батареи из теллурида кадмия – одни из самых выгодных по себестоимости киловатта электроэнергии.
Как полупроводники вырабатывают электричество?
Полупроводник является материалом, в атомах которого либо есть лишние электроны (n-тип), либо их не хватает (p-тип). То есть полупроводник состоит из двух слоев с разной проводимостью.
В качестве катода в такой схеме используется n-слой. Анодом является p-слой. То есть электроны из первого слоя могут переходить во второй. Переход происходит за счет выбивания электронов фотонами света. Один фотон выбивает один электрон. После этого они, проходя через аккумулятор, попадают обратно в n-слой и все идет по кругу.
Когда энергия выработана, все начинается по кругу, а свет всегда горит.
В современных солнечных панелях в качестве полупроводника используется кремний, а начиналось все с селена. Селен показал крайне низкий КПД — не более одного процента — и ему сразу стали искать замену. Сейчас кремний в целом удовлетворяет требования промышленности, но есть у него и один существенный минус.
Обработка и очистка кремния для приведения его к тому виду, в котором его можно будет использовать, является достаточно затратной процедурой. Чтобы снизить стоимость производства, проводят эксперименты с его альтернативами — медью, индием, галием и кадмием.
Схема устройства солнечной электростанции
Рассмотрим, как устроена и работает гелиосистема для загородного дома. Главное ее назначение – преобразовать энергию солнца в электричество 220 В, которое является основным источником питания для домашних электроприборов.
Основные части, из которых состоит СЭС:
- Батареи (панели), преобразующие солнечное излучение в ток постоянного напряжения.
- Контроллер, регулирующий заряд АКБ.
- Блок аккумуляторных батарей.
- Инвертор, преобразующий напряжение АКБ в 220 В.
Конструкция батареи продумана таким образом, что позволяет оборудованию функционировать в различных погодных условиях, при температуре от -35ºС до +80ºС.
Выходит, что правильно установленные панели будут работать с одинаковой производительностью и зимой, и летом, но при одном условии – в ясную погоду, когда солнце отдает максимальное количество тепла. В пасмурную эффективность работы резко снижается.
Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Чаще гелиосистема рассматривается как дополнительный или резервный источник электроэнергии
Вес одной батареи на 300 Вт равен 20 кг. Чаще всего панели монтируют на крышу, фасад или специальные стойки, установленные рядом с домом. Необходимые условия: разворот плоскости в сторону солнца и оптимальный наклон (в среднем 45° к поверхности земли), обеспечивающий перпендикулярное падение солнечных лучей.
При возможности устанавливают трекер, отслеживающий движение солнца и регулирующий положение панелей.
Верхняя плоскость батарей защищена закаленным противоударным стеклом, которое легко выдерживает удары града или тяжелые снежные наносы. Однако необходимо следить за целостностью покрытия, иначе поврежденные кремниевые пластины (фотоэлементы) перестанут работать
Контроллер выполняет насколько функций. Кроме основной – автоматической регулировки заряда АКБ, он контролирует подачу энергии от солнечных батарей, предохраняя тем самым аккумулятор от полной разрядки. При полном заряде контроллер автоматически отключает АКБ от системы. Современные устройства оборудованы панелью управления с дисплеем, показывающим напряжение батарей.
Для самодельных гелиосистем лучшим выбором являются гелевые аккумуляторы, отличающиеся сроком бесперебойного функционирования 10-12 лет. После 10-летней работы их емкость уменьшается примерно на 15-25 %. Это необслуживаемые и абсолютно безопасные устройства, не выделяющие вредных веществ.
Зимой или в пасмурную погоду панели также продолжают работать (если их регулярно очищать от снега), но выработка энергии снижается в 5-10 раз
Задача инвертеров — преобразовывать постоянное напряжение от АКБ в переменное напряжение 220 В. Они отличаются такими техническими характеристиками, как мощность и качество получаемого напряжения. Синусовое оборудование способно обслуживать наиболее «капризные» к качеству тока приборы – компрессоры, бытовую электронику.
Обзор бытовой СЭС:
Галерея изображений
Фото из
Солнечные панели – батареи с фотоэлементами
Контроллер для регулировки заряда АКБ
Блок гелевых аккумуляторных батарей
Инвертор – преобразователь напряжения в 220 В
Стоит знать, что бытовые электростанции способны обслуживать постоянно работающий холодильник, периодически запускаемый погружной насос, телевизор, систему освещения. Чтобы обеспечить энергией функционирование котла или даже микроволновки, потребуется более мощное и очень дорогое оборудование.
Простейшая схема солнечной электростанции, включающая главные составные элементы. Каждый из них выполняет свою функцию, без которой работа СЭС невозможна
Существуют и другие, более сложные схемы, однако данное решение является универсальным и наиболее востребованным в быту.
Это интересно: Схема подключения розетки на 380 Вольт — разбираем досконально
Коллекторы: получение тепла из солнечной энергии
Солнечные коллекторы Солнечные батареи могут применяться для обогрева объектов, нагрева жидкости. Возможность получения тепла обусловлена способностью батареи накапливать энергию. Это позволяет повышать температуру теплоносителя в трубах, за счет чего обеспечивается не только нагрев жидкости, но и обогрев всего объекта. Солнечные коллекторы функционируют по определенной схеме. Их основные элементы конструкции:
- насосная станция;
- бак-аккумулятор;
- контроллер;
- трубы и фитинги.
Виды коллекторов:
- плоские: состоят из плоского абсорбера, покрытия, теплоизолирующего слоя;
- вакуумные (трубчатые): состоят из стеклянной колбы, теплоизоляционный материал заменен на вакуум, который заполняет емкость (в ней также находится абсорбер).
У второго варианта есть существенное преимущество – низкие теплопотери. По этой причине вакуумные коллекторы применяются повсеместно там, где не могут быть установлены плоские аналоги.
Области применения
Долина солнечных батарей во Франции Солнечная батарея – это фотоэлектрический генератор, который преобразует солнечное фотонное излучение в электричество.
(Фотон – элементарная частица электромагнитного излучения, например, солнечной радиации). Обычно батарею изготавливают в виде панелей.
Размеры могут быть самые разные, в зависимости от необходимых количества и мощности конечного продукта преобразования. Сегодня солнечные батареи используются даже для сувениров, имея размеры от нескольких см2.
Площади панелей могут достигать нескольких десятков м2, когда надо получать энергию мощностью в несколько десятков квт.
Началось конструирование солнечных батарей ещё в середине прошлого века, главным образом для нужд космонавтики. Первые спутники нуждались в автономном энергообеспечении, для этого наиболее всего подходил именно этот вид источника.
Устанавливались солнечные панели на луноходах и марсоходах, а также на других космических аппаратах. Актуально всё это и сегодня, так как поиски других, более подходящих, вырабатывающих бóльшие мощности источников пока ещё не увенчались успехом.
Крупнейший в мире корабль на солнечных батареях Planet Solar Türanor
Не менее популярны солнечные батареи и на Земле. Здесь они имеют очень широкое применение, практически во всех сферах, где необходимо использование электричества.
Благодаря солнечным панелям обеспечиваются электроэнергией целые города, плавают суда и летают самолёты.
Виды солнечных батарей
В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.
I. Классификация по типу их устройства:
- 1. Гибкие;
- 2. Жёсткие.
II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:
- Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью. Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании. Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
- Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
- Солнечные батареи, фотоэлемент которых выполнен из селена;
- Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
- Из органических соединений;
- Из арсенида галлия
- Из нескольких материалов одновременно.
Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.
Другие материалы не получили широкого распространения в связи с большой стоимостью.
Как соединять солнечные батареи?
Последовательное соединение
Вот так выглядит параллельное соединение солнечный панелей. В этом случае суммируется выдаваемая сила тока, а напряжение остается таким же
параллельное соединение солнечных панелей
Параллельное соединение
Если же вы хотите увеличить напряжение, то следует соединять панели последовательно. В этом случае у вас напряжения, получаемые с каждой солнечной панели будут суммироваться.
последовательное соединение солнечных панелей
Последовательно-параллельное соединение
Если вы хотите увеличить и напряжение и выдаваемую силу тока, то в этом случае соединяют панели последовательно-параллельно
последовательно-параллельное соединение солнечных панелей