Установки плазменной резки

Применение установок

Плазменные станки с ЧПУ выбираются для отраслей, где требуются близкие к идеальным точность и ровность реза. Это машино-, судо-, приборостроительные сферы, металлопрокатные заводы и т. д. Но монтаж оборудования для плазменной резки не ограничивается производственными и промышленными предприятиями. Станки нередко выбирают для комплектования частных мастерских, включая кузнечные цеха.

Итак, какими возможностями обладают плазменные станки:

  • Резка листового материала. Это основная область, для которой достаточно небольшого компактного устройства. Плазме поддаётся большое количество разнообразных металлов. Толщина поддающихся материалов пропорциональна их теплопроводимым свойствам. Т.е. чем они выше, тем меньше должна быть толщина металла.
  • Резка трудноподдающихся обработке металлов. Плазма одна из немногих без проблем справляется с чугуном, а также достаточно капризной нержавеющей сталью. При этом место реза получается чистым, без грота и оплавлений, что особенно ценно при производстве высококачественных изделий.
  • Резка труб. При работе с трубопрокатом большого диаметра сложно обойтись только автогенным аппаратом. Тут и приходят на помощь плазменные труборезы, которые могут оснащаться дополнительными приводами для автоматизации процесса. К тому же, плазма гораздо чище и ровнее способна разрезать трубу, чем тот же автоген.
  • Художественная фигурная резка. Станок позволяет вырезать оригинальные узоры сложной геометрической формы из листового металла. Изделия находят применение в строительстве, приборостроении, а также в качестве декоративных компонентов для украшения фасадов, заборов, беседок. Посредством фигурной резки можно воплотить любые дизайнерские задумки.
  • Резка других материалов. Помимо прочего, станок плазменной резки купить можно и в целях обработки бетона, камня и других прочных материалов с плотной структурой (толщиной до 100 мм). Однако для этих целей необходимы специальные станки или модернизация существующего оборудования.
  • Резка отверстий. С данной задачей прекрасно справляются практически все станки плазменной резки.

Технология начала активно внедряться во все промышленные сферы не так давно, но уже приобрела массу почитателей среди профессиональных мастеров, специалистов разного уровня. Они оценили универсальность плазменного метода резки, его высокое качество, а главное – экономическую эффективность.

Сегодня у многих на слуху мировые гиганты Hypertherm, Kjellberg, а также российские бренды. Один из ведущих отечественных разработчиков – это ПЛАЗМАКРОЙ, выпускающий высококачественное инновационное оборудование по доступным ценам. Количество производителей плазменного оборудования неуклонно растёт, что обусловлено всё возрастающим спросом. Уже сейчас можно говорить о будущем плазмы, которая, возможно, вскоре вытеснит с рынка многие аналоги и станет общедоступным инструментом для металлообработки.

Назначение ЧПУ при плазменной резке

Наиболее высокотехнологичным вариантом выбора рассматриваемого оборудования является портальный станок плазменной резки с ЧПУ. Он  обеспечивает как высокую жёсткость конструкции, так и разнообразие траекторий перемещения инструментальной головки с плазмотроном по всей обрабатываемой поверхности  заготовки. При этом  система компьютерного управления обеспечивает:

  1. действие приводов перемещения портала и инструментальной головки по всем трём осям.
  2. поддержание оптимального расстояния между рабочей головкой и поверхностью разрезаемого металла.
  3. программное включение/выключение узлов подачи/удаления газа и перемещения отработанного грата за пределы рабочей зоны.
  4. текущую диагностику установки с обновлением (при необходимости) управляющих программ в случае изменения режимов резания.

Для генерации управляющих программ в состав машины для раскроя плазмой входит сдвоенный компьютер во влаго-, пыленепроницаемом корпусе (при поддержке определённой операционной системы Windows один из компьютеров может быть отключён). Основной компьютер снабжается цветным монитором, имеющим сенсорный экран.

Последовательность действий

Сигнал на управляющий компьютер поступает от блоков управления, которые монтируются на портале машины, с каждой его стороны.  В мобильную систему управления вводится исходная информация, касающаяся стабильности энергетических показателей в столбе плазмы, возможной корректировки режима раскроя (например, при выходе электрода из металла), состояния и степени изношенности электрода и т.д.

С другой стороны, в компьютер устройства ЧПУ вводится информация о параметрах и конфигурации зоны реза, которая основывается на чертеже получаемой детали. Большинство установок используют интегрированный интерфейс MicroStep MCNC, которая унифицирована основными фирмами-производителями, и обрабатывает необходимые размерные параметры, используя формат DXF (программы отечественного производства, ориентированные на использование программы КОМПАС, а не AutoCAD, включают в себя встроенный конвертер файлов). При этом базовый комплект CNC-программ поставляется вместе со станком.

Модуль MicroStep отвечает также за удалённый контроль над ходом проведения процесса резки. Он состоит из следующих этапов:

  • Установка так называемой «нулевой» точки, с которой начинается процесс раскроя металла;
  • Позиционирование листа на столе машины;
  • Расчёт автоматической корректировки положения листа по ходу его разрезания на основании показаний сенсорных датчиков;
  • Включение привода для поворота/подачи инструментальной головки в случае изменения толщины заготовки или при износе рабочего электрода.

Бюджетный плазменный станок для  резки отличается уменьшенным числом контролируемых характеристик, а также более ограниченной номенклатурой вариантов раскроя исходного листа.

Система ЧПУ для станка плазменной резки

Вспомогательными функциями на рассматриваемых установках считаются:

  • Контроль от возможного короткого замыкания электрода (может произойти при перебоях в подаче сжатого газа через конфузор рабочей горелки);
  • Автоматическое регулирование высоты расположения электрода над листом металла;
  • Слежение за работой устройств, которые обеспечивают охлаждение резака машины;
  • Управление работой емкостного датчика, который определяет тип обрабатываемого материала.

Виды оборудования

Стандартная установка для плазменной резки практически не требует участия человека-оператора в работе. Все операции выполняются автоматически в соответствии с заданной программой. От специалиста требуется только составление программы и загрузка ее в блок управления.
В зависимости от способа применения плазморезы относят к одной из следующих групп:

  • стационарный станок портального типа;
  • стационарные машины портально-консольного типа;
  • стационарные УВПР шарнирного типа;
  • мобильные установки. Их размещают непосредственно на листе металла, подлежащем раскрою.

В зависимости от возможностей блока управления установки и типа перемещения делятся на следующие виды:

  • линейные;
  • с функцией фотокопирования;
  • магнитно-копировальные;
  • с ЧПУ.

Дополнительно установки делятся на несколько подвидов в зависимости от количества операций, выполняемых в каждый момент времени.

Выбор аппарата для плазменной резки

Покупка любого технического оборудования – дело, для которого не нужно жалеть времени и усилий: слишком высок риск неудачного решения и потери денег. А деньги здесь немалые, вы не найдете плазменного резака дешевле 500 USD в принципе.

Сначала разбираемся с параметрами и техническими характеристиками прибора.

Выбор нужно делать только под свои планы и нужды. Задача – найти не самый лучший резак, а самый подходящий для вас по принципу «здесь и сейчас».

Две большие группы плазморезов – это инверторные и трансформаторные. Названия говорят сами за себя.


Открытая и закрытая плазменная струя.

Если вам нужен компактный резак для работы с металлами небольшой толщины, вы можете остановить свой выбор на резаке инверторного типа. Они забирают немного энергии, легкие и с небольшими габаритами.

Вместе с тем работают они с перерывами и легко выходят из строя при перепадах сетевого напряжения. Цена на такие приборы вполне умеренная, из всех плазморезов это самые недорогие.

Другое дело – трансформаторные резаки. Здесь и с габаритами, и с весом «все в порядке»: серьезные аппараты по всем параметрам.

Энергии потребляют много, зато работать они могут практически без перерыва в течение целого дня. И толщина металла может быть побольше, чем при резке инверторной моделью. Стоимость таких устройств высокая – от 3000 до 20000 USD.

Выбор плазменного резака по мощности

Рассуждения начинаем со свойств и технических характеристик деталей, которые вы планируете обрабатывать и резать. Именно это этого рассчитывается мощность режущего прибора, потому что в нем будут различаться и сопло по своему диаметру, и тип используемого газа.

Применение плазменной резки – область чрезвычайно широкая, поэтому говорить нужно только о ваших конкретных нуждах.

К примеру, если толщина металлических заготовок около 30-ти мм, вам будет вполне достаточно резака с мощностью 90А. Он легко справится с вашим материалом.

А вот если ваш металл потолще, ищите подходящую модель в диапазоне мощности от 90 до 170А.

Выбор резака по времени и скорости разрезания материала

Скорость плазменной резки металла измеряют в сантиметрах за одну минуту. Эта скорость у разных аппаратов тоже разная и зависит от их общей мощности и природы разрезаемого металла.

Например, при всех прочих равных медленнее всего режется сталь, чуть быстрее – медь и ее сплавы. И еще быстрее – алюминий со своими алюминиевыми сплавами.


Устройство плазменного резака.

Если для вас важна скорость, не забывайте о таком показателе, как длительность работы без перегрева, то есть без перерыва. Если в технической спецификации к аппарату написано, что длительность работы 70%, это означает, что после семи минут резки аппарат должен быть выключенным в течение трех минут, чтобы остыть.

Среди трансформаторных резаков встречаются чемпионы с продолжительностью работы в 100%. Иными словами, они могут работать целый день без отключения. Стоят они, конечно, немало. Но если у вас впереди длинные разрезы, думайте о покупке «чемпионских» трансформаторных плазменных резаков.

Можно ли сделать аналогичное оборудование самому

Самостоятельное изготовление плазмореза требует наличия некоторых навыков по сборке сложной техники. Основными элементами конструкции выступают: сопло, нагревательный элемент, источник питания, компрессор, коммутирующая аппаратура. Сложность возникает с подбором плазмореза, через который соединяются горючие воздушные массы.

Недостаточные расчетные значения диаметра сопла приводят к браку или к недостаточно прорезанному материалу. В качестве источника питания используют инвертор от любого сварочного аппарата. Критерием подбора является его максимальная мощность.

Критичным является соответствие типа горючего вещества выбранному материалу заготовки. С изделиями из алюминия используют азот или водород. Для медных сплавов подходит только водородная смесь. А латунь раскраивают при помощи объединенных азота и водорода.

Преимущества резки плазмой

Плазменная резка имеет свои плюсы перед лазерной резкой:

  • плазморезкой можно обработать любой металл: цветной, черный, тугоплавкий;
  • скорость разрезания проходит быстрее, чем работа газовой резкой;
  • плазморезкой доступна художественная работа — заготовки можно делать любой геометрической формы, доступна фигурная резка повышенной сложности, художественная резка металла плазмой и деталей;
  • независимо от того, какова толщина разрезаемого металла, можно разрезать заготовку быстро, точно;
  • плазморезкой можно разрезать не только металл, но и материалы, не содержащие в своем составе железа;
  • разрезание материалов с помощью плазмы проходит гораздо эффективнее, быстрее, чем обычная резка механическим способом;
  • в сравнении с лазерной резкой, плазморезка способна обрабатывать листы материала большой ширины, под углом. Изделия получаются с наименьшим количеством дефектов, загрязнений;
  • при работе в воздух выбрасывается минимальное количество загрязняющих веществ;
  • перед тем, как разрезать металл, его не нужно прогревать, таким образом сокращается время прожига;
  • безопасность во время плазменной резки на высоком уровне, так как нет необходимости использовать газовые баллоны, которые очень взрывоопасны.

Наряду с преимуществами плазморезка имеет некоторые недостатки:

  • высокая стоимость плазмотрона;
  • толщина металла, который можно разрезать плазмотроном, не должна быть более 10 см;
  • во время работы агрегат издает большой шум, так как газ подается на высокой скорости, близкой к скорости звука;
  • плазмотрон необходимо правильно обслуживать;
  • к плазмотрону нельзя прикрепить резаки, чтобы металл обрабатывать вручную.

Что такое плазменная резка металла

В двух словах, это — вид обработки металлов, при котором в качестве режущего инструмента используется струя плазмы. В сопло плазмореза подаётся газ, а между его электродом и разрезаемым металлом зажигается электрическая дуга. Она превращает газ в струю плазмы с температурой Т = 5000…30000 °С и скоростью 500…1500 м/с, которая может резать металл толщиной ≤ 200 мм (правда, на практике предельные толщины экономически выгоднее резать, все-таки, кислородом). Все подробности можно узнать в статье «Плазменная резка. Принцип работы» и других статьях сайта (рекомендуем посмотреть ссылки).

Современное оборудование позволяет качественно и быстро выполнять работы по художественной плазменной резке в соответствии с эскизами и чертежами заказчика.

Кожух шкатулки.

Требования, предъявляемые к оборудованию плазменной резки

Плазменная резка металлов регламентируется различными нормативными документами, среди которых можно выделить:

  • ГОСТ 14792-80, распространяемый на резку кислородную и плазменно-дуговую. Под действие стандарта попадают листовые стали (углеродистая, высоколегированная, жаростойкая, жаропрочная), а также алюминий и его сплавы. ГОСТ обозначает точность вырезаемых изделий и качество места реза.
  • ISO 9013:2002 – международный стандарт, в котором содержатся требования к оборудованию термической резки (допуски для размеров, возможные припуски, качество поверхности среза и многое другое);
  • ГОСТ 5614-74, ГОСТ 12221-79 (оборудование для термической резки);
  • ГОСТ 12.3.039-85 ССБТ (требования безопасности);
  • ГОСТ 4.41-85 (номенклатура).

Хотя эти документы были приняты очень давно, отчасти они не утратили актуальности и до сих пор, но с некоторыми поправками на современные разработки и технологии. Ведь нынешние аппараты для плазменной резки не сравнить с моделями того времени.

Правильное использования оборудования для плазменной резки

Производительность станка плазменной резки, а также долгое его функционирование без сбоев и ремонтов во многом зависит от условий эксплуатации и элементарных мер предосторожности:

сжатый воздух должен быть максимально чистым, нежелательно наличие в нём посторонних частиц, воды или масла;
важно поддерживать давление, рекомендуемое производителем для конкретного типа металла;
все элементы резака, включая форсунки и электроды, должны быть закреплены согласно инструкции, не допускаются люфты и зазоры;
режущийся металл должен быть надёжно закреплён на рабочем столе;
выдерживание оптимальной скорости резки позволяет увеличить качество резки, а слишком быстрая или медленная приведёт к появлению окалин;
использования насадок при контактной резке значительно продлит срок службы плазматрона, а частые касания металла и форсунки могут привести к выходу из строя некоторых элементов;
при возможности рекомендуется выдерживать угол наклона металла, чтобы расплавленные капли не попадали на горелку;
при работе станка персоналу необходимо пользоваться перчатками и защитными очками во избежание попадания капель расплавленного металла.

Каждый станок имеет свой собственный список требований, включающий рекомендуемое расстояние между горелкой и металлом, время горения вспомогательной дуги. Соблюдение рекомендаций и своевременное обслуживание продляют срок службы любой сложной техники.

Делаем плазморез своими руками по шагам

2 шаг. Самодельный кабель-шланговый пакет

Посмотрите полезный видеоролик, где умелец показывает, как сделать кабель-шланговый пакет своими руками:

4 шаг. Трансформатор для плазмореза

Один из возможных источников питания аппарата плазменной резки — это самодельный трансформатор для плазмореза. Он обладает рядом достоинств:

  • не чувствителен к перепадам напряжения;
  • позволяет резать толстый металл.

Но, вместе с тем, у него имеется несколько минусов: низкий КПД и большая масса.

Подготовка

Подберите для самоделки сварочный трансформатор, который сможет обеспечить работу вашего плазмореза в удобных для вас условиях. Бытовая однофазная электропроводка может выдерживать нагрузку до 25А, соответственно трёхфазная – до 60А. Удобнее всего использовать трёхфазную с плавной регулировкой исполнительных параметров:

  • изменением размеров воздушного промежутка между первичной и вторичной обмотками;
  • согласованным изменением числа витков первичной и вторичной обмоток;
  • применением подмагничиваемого шунта и т. п.

Необходимо проверить и отрегулировать все органы настройки. Если демонтировалась вторичная обмотка, то, будет не лишним, намотать дополнительную первичную обмотку и предусмотреть возможность её подключения при необходимости настройки режима реза. Это позволит получать ровные и гладкие стенки. Кроме того следует предусмотреть несколько ответвлений во вторичной обмотке по той же причине.

Эксплуатация самодельного трансформатора для плазмореза

Эксплуатация такого трансформатора не вызывает каких-либо трудностей. Положительная особенность таких гаджетов – они легко переносят токовые перегрузки. Недостатком (кроме неподъёмного веса) является необходимость частого применения осциллятора. Но, и этот «недостаток» очень быстро, с приобретением опыта, проходит.

5 Принцип работы аппаратов для ручной плазменной резки

После того, как установка ручной плазменной резки собрана (произведены все подключения и соединения ее элементов), металлическую заготовку подсоединяют к аппарату (инвертору или трансформатору) предусмотренным для этого кабелем. Оборудование подключают к электросети, плазмотрон подносят к обрабатываемому материалу на расстояние до 40 мм и производят зажигание дежурной (инициирующей ионизацию) электрической дуги. Затем открывают подачу газа.

После получения плазменной струи, которая обладает высокой электропроводимостью, в момент ее соприкосновения с металлом образуется рабочая (режущая) электрическая дуга. Одновременно автоматически отключается дежурная. Рабочая дуга поддерживает непрерывность процесса ионизации подаваемого газа, образования плазменного потока. Если она по какой-то причине погаснет, то требуется прекратить подачу газа, заново включить плазменный аппарат и зажечь дежурную дугу, а после этого пустить газ.

Эксплуатационные преимущества аппарата

Почему ведущие крупномасшатбные предприятия и профессиональные мастера приобретают именно станки плазменной резки металла с ЧПУ и отказываются от лазерной, гидроабразивной и традиционной газокислородной технологий? Всё это благодаря уникальным эксплуатационным преимуществам:

  • плазма на станке позволяет резать металл идеально ровно и точно, при этом на месте среза не остаются наплыв, грат и другие дефекты. Кромка после плазменной резки не нуждается в дополнительной обработке;
  • зона реза не нагревается сильно, термическое воздействие совсем небольшое, благодаря чему исключается деформация даже очень тонкого металла;
  • безопасность при работе и минимальный уровень загрязнения окружающей среды;
  • возможность работы практически с любыми металлами (чугун, алюминий, нержавейка, титан и т. д.). При смене материала для резки нужно всего лишь выставить нужную мощность и давление воздуха, нет необходимости менять плазмотрон;
  • производительность плазменных агрегатов выше в разы, чем, например, у газокислородных;
  • невосприимчивость к поверхности металла (она может быть загрязнена, с элементами ржавчины или даже покрашена);
  • расширенные возможности для нормирования технологических процессов.

Экономическая составляющая зависит от ряда факторов, среди которых толщина и вид металла. Покупка станка оправдана при постоянной работе:

  • с алюминием, включая сплавы на его основе (до 12 см);
  • меди (до 8 см);
  • легированных и углеродосодержащих сталей (до 15 см);
  • чугуна (до 9 см).

В плане этих задач плазма лидирует даже в сравнении с лазерными станками. Хотя стоит заметить, что с тонкими металлами и сложными фигурными вырезами лазер справляется лучше. А для особо толстых (до 500 мм) больше подходит кислородная технология. Зато лазер режет медленней и плохо справляется с алюминием и нержавейкой, а, например, водно-абразивные приборы стоят дорого и не могут работать с ржавеющими металлами.

У всех есть свои преимущества и недостатки. И мало какой производственный объект будет оснащать цеха станками нескольких типов. Т.е. плазменное оборудование – наиболее оптимальное и универсальное решение.

Для решивших купить станок плазменной резки металла с ЧПУ цена – не главный критерий. А она, кстати, очень даже немаленькая, особенно для портальных установок (но обычно ниже лазерных). Всё же решающим фактором для многих является производительность и качество реза, от которых напрямую и зависит окупаемость оборудования. Соответственно, учитывая качественные характеристики, продуктивность и экономность, цену также можно отнести к преимуществам.

Пара слов о горелке

Снова оцениваем природу металла или другого материала, который планируем разрезать. От этого будет зависеть мощность горелка плазмореза. Она должна быть достаточной для качественного реза.

При расчетах нужно учитывать факт, что вы можете встретиться со сложными условиями работы, которая, как назло, должны быть произведена в самые короткие сроки, то есть резка должна носить выраженных интенсивный характер.

Во многих источниках рекомендуется выбирать сопло из меди: оно прочное и отлично охлаждается воздухом, намного быстрее, чем сопла из других металлов.

Рукоятку горелку не упускаем из зоны внимания, это важная часть для комфортной, а значит качественной работы. На рукоятке можно зафиксировать дополнительные элементы, которые помогут держать сопло на одинаковом расстоянии от поверхности металла. Данный совет распространяется только на ручные модели аппаратов.

Если вы собираетесь резать тонкий металл, выбирайте модель с горелкой, которая предназначена для поступления воздуха.

Если же ваши планы связаны с массивными толстыми заготовками, покупайте резак с горелкой для приема защитного газа – азота, например.

Использование гидроабразивных станков и принцип работы

Устройства для резки металла гидроабразивом универсальны в использовании, так как их возможности не завершаются на раскрое металлических изделий. Технология основывается на специально созданной системе подачи воды под большим давлением на обрабатываемую плоскость. Дополнительным элементом жидкости является абразив, добавляющийся в воду. Как правило, в роли абразивной добавки применяют микрочастицы песка. Вода и песок одновременно попадают в смеситель из отдельных емкостей, в котором тщательно смешиваются. Затем полученная смесь под высоким давлением подается в сопло станка.

После, рабочий водно-абразивный резак, в виде сильной струи с определенными характеристиками, подается на деталь и разрезает его.

В этом случае скорость гидроабразивной резки можно сравнить только что со скоростью плазмореза, но вот качество выполненного этим способом среза соответствует только качеству резки лазером.

Быстрое развитие современных технологий дало возможность усовершенствовать станки благодаря расширению их рабочих возможностей. За счет чего их сфера использования значительно увеличилась.

Сегодня водно-абразивные станки позволяют:

  • Вырезать изделия любых геометрических форм с помощью числового программирования. В этом случае обработка происходит полностью в автоматизированном режиме и не требует наличия оператора. Станок управляется специально установленной компьютерной программой. Гидроабразивная порезка труб дает возможность сделать необходимую окружность без каких-либо погрешностей;
  • Делать нестандартный рез любого материала, причем изменяющийся наклон разреза не сказывается негативно на качестве. Процесс работы, который выполняется под любым наклоном, позволяет на выходе получить абсолютно готовое изделие и не подвергать его финишной обработке;
  • Гидроабразивный способ нашел свое применение и в области искусства. Оборудование дает возможность изготавливать различные украшения и предметы дизайна, как правило, обработка фигур делается с помощью ЧПУ;
  • Установки для обработки гидроабразивом, применяемые в металлопрокате, позволяют делать разрезание максимальной толщины любого металла, это можно увидеть на видео. Так, обработка изделия из среднеуглеродистого металла может происходить с использованием материала, у которого максимальная толщина – 20 см. Наибольшая толщина титанового сплава составляет 16-18 мм; высокопрочные металлы могут быть толщиной 11 мм. Но вот толщина медного изделия достигает только 6 мм.

Принцип действия плазменной резки

Плазменная резка – это разделительная обработка металла с помощью термического процесса. Роль режущего инструмента здесь играет струя низкотемпературной плазмы.

Принцип действия плазменного аппарата:

  1. Между разрезаемым металлом и электродом или соплом плазмотрона создается электрическая дуга с температурой в 5000С.
  2. В сопло под давлением поступает газ, за счет чего температура электрической дуги повышается до 20 000С.
  3. Газ ионизируется и преобразуется в высокотемпературный газ или низкотемпературную плазму.
  4. От нагретой дуги возрастает ионизация, и температура газовой струи повышается до 30 000С. Во время этого процесса поток плазмы обладает высокой теплопроводностью и ярко светится.
  5. Плазма со скоростью в 500–1500 м/с проистекает из сопла, попадает на подготовленный металл, разогревает его и плавит в месте разреза.

Более наглядно процесс резки металла с помощью плазмотрона можно посмотреть по видео.

1 Виды и классификация станков плазменной резки

Станки плазменной резки предназначены для машинного раскроя с минимальным использованием ручного труда. Такие установки применяют на различных производствах. Они позволяют получать идеальное качество реза, когда дополнительная обработка получаемых деталей не требуется. Станки, оснащенные ЧПУ, обеспечивают практически полную автоматизацию процесса раскроя изделий по заданному требуемому контуру, геометрическая форма которого может быть любой, даже очень сложной. Все плазменные машины по мощности, способу применения и общей конструкции делят на два типа:

  • переносные – устанавливают непосредственно на обрабатываемое изделие (лист или трубу), во время работы перемещаются по направляющим, циркульному устройству, разметке либо гибкому копиру;
  • стационарные.

Стационарные по конструкции подразделяют на:

  • портальные;
  • портально-консольные;
  • шарнирные – осуществляют только вертикальный раскрой.

По типу движения или системы управления перемещением плазменного резака стационарные станки делят на:

  • линейные – для прямолинейного раскроя;
  • фотокопировальные (фотоэлектронные) – для фигурного резания по чертежу;
  • магнитно-копировальные (электромагнитные) – для фигурной обработки по стальному образцу или копиру;
  • установки с ЧПУ – резка по заданной программе.

По объему выполняемых одновременно работ, операций станки бывают:

  • для обработки одного изделия и пакетной резки нескольких;
  • производящие одновременно несколько резов (с несколькими плазматронами) и только один (с одним резаком).

Где применяется оборудование

Сфера применения плазморезов в промышленности практически не ограничена. В любом производстве, предполагающем раскрой металлических заготовок, должна быть установка плазменной резки. Благодаря быстрой и легкой перенастройке программного обеспечения установки можно применять и в серийном, и в штучном производстве металлоконструкций. На сегодняшний день без плазморезов невозможно производство:

  • плавсредств, кораблей, понтонов;
  • легковых и грузовых автомобилей, спецтехники;
  • станков;
  • вагонов, цистерн, ж/д платформ;
  • самолетов, летательных аппаратов;
  • отопительного оборудования и многого другого.

В зависимости от функционального назначения при помощи установок можно вырезать не только простые, но и сложные геометрические формы, элементы дизайна и оформления фасадов зданий, малые архитектурные формы. Правильная настройка режима — это возможность работать не только со сталью, но и с композитными материалами, сплавами и т.д.

Особенности процесса резки

Станок с плазменной резкой ЧПУ раскраивает металл посредством ионизированного газа, который условно можно поделить на две категории:

  • активный (т. е. кислород), идеальный для чёрных металлов.
  • неактивный – водород, азот и даже водяной пар. Наиболее результативен при раскрое цветмета и многих сплавов (высоко- и низкоуглеродных, конструкционных, высоколегированных, нержавеющих).

В более технологически сложных комплексах используются газовые смеси, где с кислородом сочетаются водород, аргон, гелий. Благодаря этому исключается азотирование и окисление в районе реза, тем самым обеспечивается более высокое качество.

Плазмообразующая среда – главная характеристика всех станков для резки. Регулируется она пропорцией используемых газов и настройками плазмотрона. Изменение плазмообразующей среды позволяет менять температуру теплового потока, его скорость, плотность. Делается это с учётом обрабатываемого материала, химсостава, вязкости, физических свойств. Неправильно подобранные параметры приводят к появлению подплывов и других дефектов.

Станки плазменной резки листового металла с ЧПУ функционируют в нескольких режимах:

  • Простой (используется ток, воздух и азот), не позволяет получить большую длину дуги, что ограничивает работу с металлами более 10 мм толщиной.
  • Резка с использованием защитного, плазмообразующего газа или даже воды. Такие способы защищают место среза от воздействия окружающей среды.

Резка может осуществляться дугой или струёй:

Первый метод подразумевает, что разрезаемый материал выступает проводником, становится участником электроцепи. Т.е. дуга формируется между электродом и режущимся металлом. Выходящая из плазмотрона струя газа совмещается с дугой. Метод называется плазменно-дуговым и считается наиболее эффективным.

При работе струёй дуга формируется между электродом и соплом, соответственно, металл не является частью цепи. Из плазмотрона вырывается струя плазмы, которая и производит резку. Способ больше подходит для материалов, которые не способны быть проводниками.

Виды станков

Станки для резки металла плазмой, оборудованные электронным блоком управления максимально автоматизируют процесс выполнения операции, вмешательство оператора — минимально. Специалист осуществляет только настройки, остальное выполняет машина. Установки принято классифицировать по способу использования:

  • стационарная портальная установка плазменной резки;
  • стационарная портально-консольная машина;
  • стационарный шарнирный УВПР;
  • мобильные станки плазменной резки, которые устанавливают на обрабатываемое изделие.

По характеру движения и возможностям управления, различают:

  • линейные;
  • фотокопировальные;
  • магнитно-копировальные;
  • установки с СПУ.

Также машины классифицируются по количеству операций, выполняемых одновременно.

Какое оборудование применяют?

Обычно используют два типа оборудования:

  1. Трансформаторные. Могут разрезать металл толщиной до 40 мм.
  2. Инверторные. КПД выше чем у трансформаторных аппаратов, однако, нельзя разрезать заготовку, толщина которой больше 30 мм.

Принцип работы у этих механизмов одинаковый. Состоят они из компрессора, источника питания и плазмотрона.

Может изменяться расположение компрессора. В некоторых моделях этот элемент встроен. У таких моделей низкая мощность. Модель со встроенным компрессором используется в гаражах, небольших мастерских. Для промышленного производства нужно применять аппараты с внешним компрессором.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий