Грузоподъёмные траверсы. работаем с большим грузом.

Нейтральная ось распорной траверсы

Нейтральная ось — это ось в балке или трубе, вдоль которой нет продольных напряжений.

Рис. 3 иллюстрирует принцип нейтральной оси

На рисунке приведена балка с опорой в двух точках. При приложении нагрузки балка подвергается изгибу и сжатию. В верхней части балки материал сжимается (и балка становится немного короче), нижняя часть балки подвергается растяжению (растягивается на пару миллиметров). Если верхняя часть балки становится немного короче, а нижняя часть балки становится немного длиннее, должна быть часть балки (между верхней и нижней частью), которая сохраняет длинну постоянной. Линия, в которой это происходит называется нейтральной осью стержня. Для симметричных профилей нейтральная ось находится в геометрическом центре сечения. Это нас устраивает, потому что упрощает дизайн распорного устройства.

Почему важно, чтобы силы пересекались на нейтральной оси? Любая сила, которая применяется к распорке на нейтральной оси, приводит к усилию сжатия в стержне распоки. Любая сила приложенная но не выровненая по нейтральной оси, создает момент и как следствие изгиб стержня

Траверса которая подвергается изгибным силам и/или  изгибающему моменту намного сложнее в проектировании, дороже в производстве, и она уже не будет простой и легкой конструкцией, к которой мы стремимся.

Ниже приведена схемы наиболее распространенных узлов крепления распорной траверсы с объяснением образующихся в них сил.

Грузозахватные приспособления. Схемы строповки груза

К съемным грузозахватным приспособлениям (рис. 7) относятся стропы, траверсы, захваты.

К ним также следует отнести одноканатные грейферы, которые навешиваются на крюк крана, магниты и электромагниты.

Рисунок 7 — Съемные грузозахватные приспособлениям

Стропы. Стропы (рис. 8) изготавливаются из различных материалов (стальной канат, цепь из легированной стали, металлическая сетка, синтетическая нить и синтетическая канат) и должны соответствовать общим и дополнительным (специальным) требованиям, а именно: стропы должны иметь минимальные конструктивные параметры, основанные на типе материала, из которого они изготовлены.

Рисунок 8 — Стропы

Конструктивные параметры определяются на основе номинальной грузоподъемности стропов с поправкой/ учетом на номинальную прочность, на разрыв сращивание или соединение концов, количество частей стропы, тип узла, угол груза и центр тяжести, диаметр изгиба, вокруг которого обвязывается строп. Стропы необходимо оберегать от острых кромок и изгибов посредством угловых подкладок, накладок или деревянных шашек.

Перед производством работ надо проводить визуальную проверку строп, а также проверять их состояние сразу после поднятия груза, выполненного с приложением больших усилий. Следует избегать перегрузки и резкого приложения нагрузки. Начало и окончание поднятия должны быть медленными. Стропы должны храниться на рамах в вертикальном положении, без перегибов, в местах, где они не смогут получить механическое повреждение, а также, где на них не будут оказывать воздействие корродирующие вещества, влажность, высокая температура.

Строповка — это совокупность методов обвязки и зацепки грузов для их подъема и перемещения грузоподъемными машинами (кранами).

Стальные канаты: Канаты должны проверяться в соответствии с установленными нормативно-техническими требованиями: в каждом подразделении назначается лицо, ответственное за состояние канатов. Результаты проверки регистрируются в Журнале учета и осмотра такелажных средств, механизмов и приспособлений.

При использовании канатов необходимо не допускать их перегибов или перекручивания, их волочения по грязи, не допускать сминания или сильного искривления.

Обслуживание: Хранить канаты следует в специально отведенном месте, чтобы недопускать их повреждения или ухудшения состояния.

Проволочный канат: Для различного применения разработаны различные типы строп. Среди них замкнутая петля, цельная, двухветвенная бридель, четырехветвенная бридель и другие комбинации. Стропы должны проверяться в соответствии с установленными нормативно-техническими требованиями, в каждом подразделении назначается лицо, ответственное за состояние канатов. Данные об осмотрах, проверках должны фиксироваться. Каждый строп из стального каната должен иметь бирку (маркировку) с указанием номера и грузоподъемности. Они должны отвечать требованиям ГОСТ и иметь сертификат изготовителя.

Плоскостные и пространственные грузоподъёмные траверсы

Ввиду сниженной жёсткости таких устройств их длина не должна превышать 3,5…4 м. Линейные траверсы в виде балок состоят из четырёх частей – собственно балки (в пазах которой перемещаются грузовые кольца строп), двух консольно расположенных связей, опорной стойки и подвески. Количество строп может варьироваться от двух до четырёх (последний вариант используется в том случае, если траверса – балансирная). Иногда на консолях таких траверс предусматривают гнёзда под установку дополнительных секций, но это рекомендуется лишь при подъёме габаритных грузов малого веса, и лишь внутри помещений. Безопаснее в таких случаях применять не составные, а цельные траверсы.

Линейные грузоподъёмные траверсы трубного типа конструктивно проще. Они представляют собой горизонтальную балку, к противоположным концам которой монтируются две стальные передвижные обоймы под стропы. Противоположный конец стропа прикрепляется к проушине, приваренной к верхней плоскости трубчатой балки.

Грузоподъёмность плоских траверс ограничивается 4…6 т, однако выпускаются и особые конструкции таких приспособлений, позволяющие увеличить допускаемую нагрузку до 8…12 т. Обоймы траверс в этом случае – треугольные, причём в каждой точке треугольника имеются захваты, которые позволяют разнести по ширине точки прикрепления строп.

Надёжность линейных траверс зависит от способа захвата груза. Применяются следующие типы захватов:

Пальцевые, предназначенные для перемещения длинномерных грузов, круглых в плане. Вильчатые, которыми удобно перемещать пакетированные грузы с хотя бы одной гладкой плоскостью. Грейферные, при помощи которых возможно перемещение высоких длинномерных конструкций, с последующим механическим расцеплением. Рычажно-эксцентриковые, которые фиксируют транспортируемый груз с помощью возникающих сил трения. Их можно изменять в зависимости от веса груза.

Маркировка плоских траверс – 2СКТ, 2СКТ (тип В), 3СКТ. В траверсах 2СКТ подъём выполняется за центральную часть, в 2СКТ (тип В) – за две противоположные точки, траверсы типа 3СКТ (только трубного исполнения) снабжаются регулируемыми по размерам обоймами.

Пространственные траверсы обычно маркируются 4СКТ, 5СКТ, 6СКТ, 7СКТ или 8СКТ. Маркировка 4СКТ соответствует траверсам т-образного типа, которые поднимают груз за три точки. Траверсы типа 5СКТ имеют н-образное исполнение, которое позволяет захватывать груз за четыре и более точек опоры. Исполнения 6СКТ и 7СКТ различаются лишь допускаемыми нагрузками на элементы траверс: для 7СКТ такие нагрузки могут быть выше, поскольку средняя часть приспособления дополнительно усиливается стальной растяжкой. Такие траверсы иногда называют траверсами – спредерами.

Пространственные траверсы имеют рамный тип, а потому считаются наиболее надёжными. Их преимуществом является также разнообразие креплений и захватов.

Траверсы 8СКТ изготавливаются разборными. При соединении нескольких элементов в сборе такие приспособления могут поднимать груз весом до 16 т, и размерами более 10 м. Всё зависит от возможностей крана и условий, в которых он действует.

https://youtube.com/watch?v=gYtbZhjohrQ%3F

Зависимость грузоподъемности стропа от способа обвязки

Грузоподъемность стропа, которая для стандартных условий указана на бирке, изменяется в зависимости от способа обвязки груза. Зависимость следующая:

— затяжка груза петлей — минус 20% грузоподъемность от указанной на бирке
— свободная укладка на 2 стропах — плюс 100%
— угол между ветвями 45 град. — минус 10%
— угол между ветвями 90 град. — минус 30%

Если при обвязке есть несколько условий, меняющих грузоподъемность, они суммируются. Например, при затяжке длинномерного груза 2 петлями при угле между ветвями 45 град., для каждого стропа грузоподъемность следует уменьшить на (20+30) 50%.

Снятие строп с груза

Когда груз перемещен, его освобождают от строп. К этой процедуре приступают тогда, когда оборудование стоит на прочной основе и не может самостоятельно сдвинуться или опрокинуться. Перед этим ослабляют натяжение тросов; на каждом крюке размыкают предохранительные устройства, вынимают крюки из проушин, с острых граней снимают защитные прокладки.

После подъема строп становится возможной перевозка станков и другие действия: установка, подключение, испытания. Для того, чтобы длинномерные круглые предметы не раскатывались, применяют ограничители и страховочную обвязку. Для подъема бетонных изделий на высоту используют захватные приспособления с дистанционным управлением. Захваты снимают после завершения монтажа.

Категорически запрещается:

  • использовать неисправное, непроверенное такелажное оборудование;
  • применять стропы, не соответствующие весу и характеристикам груза;
  • стоять под грузом, под работающими частями подъемных механизмов, в зоне их движения и на пути перемещения оборудования;
  • вставлять крюк в проушину не полностью, с усилием, поправлять ударами молотка, монтировки;
  • не поправлять стропы и крюки «на ходу», когда движение уже началось;
  • работать без средств индивидуальной защиты: каски, перчаток, спецобуви.

Расчёт траверс на сжатие

Помимо стандартных конструкций, работающих на изгиб, существуют ещё и траверсы, работающие на сжатие. Различают два вида подобных конструкций – линейные и трёхлучевые, форма которых определяется в зависимости от предполагаемого типа нагрузок и необходимой высоты подъёма.

При изготовлении используются балки с различными видами поперечных сечений, составляемыми из двух швеллеров, двутавров и труб, укреплённых металлическими уголками.

Пример расчета траверсы н-образной

При расчёте данных конструкций в первую очередь определяют расчёт натяжения в каждой тяге, соединяющей траверсу с подъёмного механизма, равный частному массы перемещаемого груза (Q) на двойной косинус угла наклона троса:

N = Q/2cosα

В зависимости от данного параметра дополнительно высчитывают материал и толщину троса. Далее определяется общее сжимающее усилие, создаваемое стержнем траверсы, равный половине произведения массы груза на коэффициент динамического воздействия и тангенс угла наклона троса:

N = (Q*kд*tgα)/2

Таким образом, тщательно проведённый расчёт траверсы позволяет не только выбрать наиболее оптимальную для производственных нужд модель, но и обеспечить надёжность, безопасность и бесперебойность подъёмных и транспортировочных процессов на многие годы.

Классификация траверс и варианты их исполнения

Классификация грузоподъёмных траверс может быть выполнена в соответствии с положениями РД 36-62-00, в котором устанавливаются требования по материалам, из которых должны производиться траверсы, а также по технологии их производства. Поскольку область применения грузоподъёмных траверс весьма разнообразна, то большинство производителей разрабатывает конструкции данных устройств под конкретные требования заказчика.

Специального ГОСТа на все виды траверс нет, но, согласно отраслевым ТУ, для всех конструкций должны оговариваться условия их эксплуатации при внешних температурах окружающего воздуха, а также порядок безопасного обслуживания и сроки осмотра.

Безопасность работ с использованием грузоподъёмных траверс обеспечивается совокупным действием следующих факторов:

  1. Снижением (а то и полным снятием) растягивающих усилий, действующих на груз – эти усилия воспринимаются траверсой.
  2. Уменьшением угла между стропами, что уменьшает вероятность их разрушения.
  3. Удобств манипулирования краном при сложных траекториях перемещения груза, что особенно касается грузов с пониженной жёсткостью – автомобилей, бетонных конструкций и пр.
  4. Уменьшением вероятности опрокидывания груза при больших ветровых нагрузках.

Виды траверс определяются:

  • Количеством точек зацепления строп. По этому параметру различают пространственные и плоские конструкции. Первый вариант применяется при транспортировке таких грузов как пачки листового металла или стеновые бетонные панели, где требуемое количество строп обычно не более двух. Грузоподъёмные траверсы пространственного типа предназначены для перемещения полногабаритного оборудования и машин, где необходимое число строп не должно быть менее четырёх;
  • Способом присоединения к крановому крюку. Это могут быть проушины, кронштейны или косынки. К качеству такого соединения предъявляются особые требования: оно может быть сварным или сборным, но в любом случае периодически подвергается проверке с целью выявления возможных трещин, очагов коррозии или люфтов в соединении;

Требуемой жёсткостью. Плоскостные траверсы производятся в виде ферм или балок. Для их изготовления применяется профильный прокат – трубы, швеллеры или уголки

Преимущество таких приспособлений – малая парусность, что особенно важно при работе на открытых площадках. Объёмные в плане траверсы изготавливают их квадратных или прямоугольных труб, что объясняется относительно малым весом конструкции при значительном моменте сопротивления сечения; Способом фиксирования строп в самой траверсе. В частности, для возможности поворота груза в процессе его перемещения изготавливают поворотные, балансирные траверсы, которые обеспечивают поворот огибающих роликов в пространстве строповыми канатами

В частности, для возможности поворота груза в процессе его перемещения изготавливают поворотные, балансирные траверсы, которые обеспечивают поворот огибающих роликов в пространстве строповыми канатами

Это облегчает манипулирование грузом. Балансирные траверсы используются также при совместном подъёме груза двумя кранами, ими можно поднимать грузы, точки зацепления которых по вертикали неодинаковы. При отсутствии таких требований грузоподъёмные траверсы выпускают в неповоротном варианте

В частности, для возможности поворота груза в процессе его перемещения изготавливают поворотные, балансирные траверсы, которые обеспечивают поворот огибающих роликов в пространстве строповыми канатами. Это облегчает манипулирование грузом. Балансирные траверсы используются также при совместном подъёме груза двумя кранами, ими можно поднимать грузы, точки зацепления которых по вертикали неодинаковы. При отсутствии таких требований грузоподъёмные траверсы выпускают в неповоротном варианте.

Виды

На сегодняшний день существуют следующие типы конструкций:

  1. Линейные. Типовые конструкции для транспортировки длинномерных предметов. Применяются, если необходимо погрузить или разгрузить трубы, слябы, арматуру, стальные заготовки, рельсы, листы металла, брёвна и другие пиломатериалы. Используются также для погрузки/разгрузки автомобилей и контейнеров. Способ строповки линейной траверсы определяет вид грузозахватных механизмов, размещённых по краям и в центральной части. Траверса первого типа монтируется на крюк крана. Широко используется на предприятиях, в портах и так далее. При использовании такого механизма необходимо выполнять выравнивание груза, чтобы не произошло перевешивание в какую-либо сторону. Траверсы второго типа удобны в работе с грузами со смещённым центром тяжести. За счёт своей конструкции они не допускают перевешивания груза с одной части на другую.
  2. Трубные. Относятся к линейным механизмам. Трубная траверса представляет собой балку, закреплённую в горизонтальном положении. На торцах расположены передвижные обоймы из стали, предназначенные для монтажа строп. Производятся цельными и разборными. Главное преимущество элементов трубного типа – возможность изменения длины. При этом грузоподъёмность оборудования остаётся неизменной. Трубные траверсы широко используются на предприятиях, где необходима транспортировка продукции разной длины.
  3. Для контейнеров. Устройство, оснащённое автоматическими захватами, позволяет минимизировать труд стропальщика. Крепление контейнера осуществляется за верхние фитинги.
  4. Т-образные. Такие траверсы имеют три точки крепления, они используются для переноса грузов, у которых центр тяжести смещён. Применяют их преимущественно при необходимости транспортировать токарные и фрезерные станки, строительные материалы и так далее. В устройстве используется переставное звено. Его применяют для точного определения центра тяжести груза и предотвращения перекоса самой траверсы. Максимальная грузоподъёмность конструкции может достигать 32 тонн.
  5. Спредер 4-точечный. Основным предназначением является перемещение крупногабаритных предметов. Имеет четырёхточечное крепление для предотвращения смещения центра тяжести. Оснащается стальными или гибкими стропами, например, канатными, цепными, текстильными.
  6. Спредер одноточечный. Основное отличие от предыдущего устройства – строповка самой конструкции выполняется за элементы траверсы, расположенные по центру.
  7. Н-образная. Предназначена для перемещения крупногабаритных грузов с креплением на четыре точки. Возможно использование в ограниченных пространствах. Используется для транспортировки контейнеров, проката, строительных конструкций. В целях обеспечения удобства и безопасности, траверсы такого типа оснащены гибкими стропами и различными видами грузозахватных механизмов.
  8. Спредер (трубный.) Конструкция такого типа позволяет подобрать габариты в зависимости от размеров груза, добавив или сняв отдельные элементы. При этом грузоподъёмность траверсы не меняется. Пользуется спросом на предприятиях, производящих продукцию разных размеров (преимущественно, промышленные, машиностроительные и т. п.).
  9. Линейная траверса с растяжками. Оснащена дополнительными элементами с целью увеличения жёсткости и грузоподъёмности оборудования.

При правильном выборе траверсы можно существенно увеличить оперативность погрузочно-разгрузочных работ, снизить вероятность получения травм персоналом на производстве, выполнить большее число операций.

Предлагаем ознакомиться со статьями:

  • Особенности технического обслуживания кранов
  • Шинопровод: особенности конструкции и монтажа
  • Козловой кран: особенности и область применения

Траверсы на сжатие без промежуточной оснастки

Второй тип распорок когда стропы не оканчиваются на траверсе, а проходят по её торцевым огибателям сразу к нагрузке. Поскольку угол стропов над распоркой создает выталкивающе усилие на траверсе, необходимы вспомогательные стропы которые фиксируют положение такой траверсы.

Этот тип распорок имеет свои преимущества и недостатки. Преимущество в том, что для основных строп не требуются чекеля на торцевых узлах балки, только пара небольших проушин для вспомогательных строп. Кроме того, требуются только два основных стропа, а не четыре как в выше приведенных случаях. Недостатком является то, что такие распорки всегда подвергаются некоторой степени изгиба из-за расположения проушин для вспомогательных строп. Чем ближе они к торцам траверсы, тем меньше изгибающий момент в стержне распорки, тем выше напряжение во вспомогательных стропах. Небольшой изгиб также вводится двумя главными стропами, поскольку углы подхода (от крюка крана до распорки) и углы вылета (от распорки до нагрузки) не совпадают. Сила сжатия, вероятно, будет идти слегка выше нейтральной оси. Это делает этот тип распорных траверс менее подходящим для вставных или скользящих креплений торцов. Фланцевые узлы для вставок подходят лучше всего, поскольку болты воспринимают эксцентриситет от сил сжатия.

И последнее, но не менее важное: анализ этих типов распорок сложнее, чем с ранее описанными распорными траверсами. Сила в распорке вызванная углом 60 градусов, теперь воспринимается вспомогательными стропами. На рисунке 6 показан подъем блока HRSG массой 200 тонн

Две основные стропы каждый принимают 100 тонн, это натяжение стропов равнозначно под и над треверсой, так как это непрерывная стропа. Без учитёта местное трения на торцах траверсы. Угол между основным стропом и горизонталью составляет 75 градусов

На рисунке 6 показан подъем блока HRSG массой 200 тонн. Две основные стропы каждый принимают 100 тонн, это натяжение стропов равнозначно под и над треверсой, так как это непрерывная стропа. Без учитёта местное трения на торцах траверсы. Угол между основным стропом и горизонталью составляет 75 градусов

Сила в распорке вызванная углом 60 градусов, теперь воспринимается вспомогательными стропами. На рисунке 6 показан подъем блока HRSG массой 200 тонн. Две основные стропы каждый принимают 100 тонн, это натяжение стропов равнозначно под и над треверсой, так как это непрерывная стропа. Без учитёта местное трения на торцах траверсы. Угол между основным стропом и горизонталью составляет 75 градусов.

Если верхние и нижние стропы прекратятся в чекеле, верхнее натяжение стропа будет составлять 100 т / sin 75 = 103,5 т. Это не так, поскольку это непрерывная стропа, но когда мы рисуем силовую диаграмму, мы оставляем 3,5 тонны, что нужно учитывать. Эти 3,5 тонны воспринимаются вспомогательными стропами, чтобы противостоять силам в распорке от основных строп. Вспомогательные стропы должны быть ближе к торцам траверсы, чтобы воспринимать эти 3,5 тонны. На рисунке 6 вы можете видеть, что вспомогательные стропы фиксируются на расстоянии от торцов. Угол вспомогательных стропов с горизонталью составляет 85 градусов. Таким образом, напряжение в вспомогательных стропах будет:

Разница небольшая из-за больших верхних углов; если бы верхние углы были меньше, разница в растяжении в вспомогательных стропах была бы значительной в зависимости от места окончания.

SOURCE: KHL

Примеры узлов грузоподъемных траверс работающих на сжатие.

Рис 4а — типичный узел 

На рис. 4а показана простейшая конструкция — пластина с верхним и нижним отверстиями вваренная в прорезь. Независимо от применяемой оснастки и такелажа в таком узле у нас всегда будет плечо между проекциями действующих сил, и как следствие момент в узле. Отсюда изгиб балки и потеря несущей способности на сжатие. Из-за ошибки в дизайне надежность конструкции будет меньше теоретически достижимой.

Изгибающий момент при таком дизайне равен усилию от нижнего стропа помноженному на плечо А

М=F*A

Как видно изгибающий момент растет пропорционально уменьшению угла альфа.

Рис. 4b — выравние по нейтральной оси

Пример приведенный на рисунке 4b показывает серьезный прогресс в дизайне. Верхняя проушина расположенна под углом и если верхний строп будет расположен под тем же углом тогда проекции усилий от нагрузки и подъемного устройства пересекутся на нейтральной оси, это позволит избежать появления момента. Но все такелажники знают, что на практике это редко удается реализовать. Почти всегда нижний строп отклоняется от вертикали в ту или иную сторону.

Другая рабочая ситуация — распорка используется для подъема нескольких типов груза разного размера и веса. Вместо того чтобы удлиннять или укорачивать распорку (добавляя или убирая доборные элементы  в случаях модульных траверс), подгоняя размер под габариты груза возникает желание использовать уже собранную оснастку, чтобы сэкономить время. Естественно углы строповки меняются, и опять появляется момент.

Что касается верхних стропов, то, как только угол верхнего выступа известен, для такой траверсы можно назначить фиксированную такелажную оснастку со стропами подходящей длинны, в соответсвии с угловым смещением верхней проушины. Однако при выходе из зазора эти верхние стропы могут быть заменены на более короткие, итог тот же —  изгибающий момент в стержне траверсы.

Как мы можем преодолеть эти нежелательные ситуации, когда в стрежне распорки образуется изгибающий момент (для которых он не был разработан), но не потерять гибкость и использовать распоку на площадке для грузов разного размера и веса?

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий