Полимерные материалы

Деление по природе гетероатома

Классификация полимеров может зависеть и от природы гетероатомов, она включает несколько групп:

  • с атомами кислорода в главной цепи – простые и сложные полиэфиры и перекиси;
  • соединения с содержанием в основной цепочке атомов азота – полиамины и полиамиды;
  • вещества с атомами кислорода и также азота в главной цепи, примером которых стали полиуретаны;
  • ВМС с атомами серы в основной цепочке – политиоэфиры и политетрасульфиды;
  • соединения, у которых присутствуют в главной цепи атомы фосфора.

https://youtube.com/watch?v=6ixMX3yY0_A

Литье изделий

В создании изделий из данного полимера методом литья применяются три технологии: ротационное литье, свободное литье в форму и литье под давлением.

Ротационное литье применяется для покрытия полиуретаном больших площадей и деталей цилиндрической формы. Полимер наносится специальным оборудованием на вращающийся вал, всю процедуру контролирует компьютер. Ротационное литье проводится без нагрева, является малоотходным производством и позволяет полностью подстроиться под задачи клиента.

Свободное литье применяется для создания сложных форм, в некоторых случаях готовое изделие может весить полтонны. Благодаря компьютерному управлению литье в форму проходит под точным контролем дозирования полимера, его температуры и давления, под которым он поступает. Это позволяет производить изделия высокого качества.

Литье под давлением позволяет ускорить производство, оно необходимо для создания больших партий. Этот метод подходит не только для полиуретана, но и других полимеров.

Особенности и интересные факты

Впервые полиуретан был получен в 40-х годах в Европе. В ходе долгих лабораторных исследований известный химик, ученый и технолог Байер Отто Георг Вильгельм получил ранее неизвестный материал с ошеломляющими техническими свойствами.

В этом же году был создан первый завод, и новый полимер был выпущен на рынок. Но широкое применение он нашел только через 20 лет, когда его стали повсеместно использовать в различных отраслях промышленности. Американские компании Union Carbide и Mobay Chemical Corporation были первыми, кто начал производить полиуретан и изделия из него.

Химические свойства полимеров

Химическая стойкость полимеров определяется разными способами, но чаще всего по изменению массы при выдержке образца в соответствующей среде или реагенте. Этот критерий, однако, не является универсальным и не отражает природу химических изменений (деструкции).

Даже в стандартах (ГОСТ 12020—66) предусмотрены лишь качественные ее оценки по балльной системе. Так, полимеры, изменяющие за 42 суток массу на 3 … 5%, считаются устойчивыми, на 5 … 8% — относительно устойчивыми, более 8 … 10% — нестойкими. Конечно, эти пределы зависят от вида изделия и его назначения.

Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая — к органическим.

В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины.

Поэтому полимеры широко используются в качестве контейнеров для особо чистых реактивов и воды, защиты и герметизации радиокомпонентов, и особенно полупроводниковых приборов и ИС.

Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуумплотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропустоты, образующиеся при движении отдельных сегментов полимера, даже если его структура бездефектна.

Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:

  • толщина слоя велика,
  • полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверхности металла.

Как видно, герметизирующие возможности полимеров ограничены, а пассивирующее их действие неуниверсально. Поэтому полимерная герметизация применяется в неответственных изделиях, эксплуатирующихся в благоприятных условиях.

Для большинства полимеров характерно старение — необратимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кислот и щелочей) к изменению строения и молекулярной массы, называется химической деструкцией.

Наиболее распространенный ее вид — термоокислительная деструкция — происходит под действием окислителей при повышенной температуре. При деструкции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком.

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры.

Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров, дибромнеопентилгликоля или тетрабромфталевой кислоты.

Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике

Учитывая высокие требования экологической безопасности, особое внимание уделяется галоген-несодержащим компонентам: соединениям фосфора и гидроксидам металлов

Что такое синтетические полимеры?

Человечество издавна использует натуральные полимерные материалы в своем быту; меха, кожу, шелк, шерсть, известь, хлопок, цемент, и глину. Но изготовление цепных полимеров в широких масштабах началось только 20 веке. В 1906 году, ученый Лео Бакеланд открыл смолу, которая ныне носит название “бакелит” — результативный продукт при сгущении фенола и формальдегидного вещества, которое при увеличении температуры переходило в трехмерное состояние. Еще очень долгого, впоследствии, он выпускался для корпусных обшивок телевизоров, электроприборов, розеток и аккумуляторных коробок, а в современном мире его стали использовать как адгезирующее связующее вещество.

Полимеры – это вещества, с неорганической и органической основой, с аморфным и кристаллическим строением, в состав которых входят соединенные мономерные макромолекулярные звенья.

Синтетический полимер — это искусственный полимерный материал, являющийся альтернативой природному сырью. Его получают лабораторным путем двумя методами: полимеризационным и поликонденсационным.

Сфера применения

Получение полимерных материалов в свое время было настоящим прорывом. Низкая себестоимость и отличные физические и химические свойства полипропилена способствовали развитию многих отраслей промышленности. Благодаря внедрению новых технологий удалось повысить эффективность производства, заменить многие дорогостоящие материалы более современными и прогрессивными.

Новые высокотехнологичные материалы являются экологически чистыми и легко подвергаются переработке и утилизации.

Все это способствует тому, что полипропилен постепенно вытесняет с рынка такие материалы, как поливинилхлорид, АБС-пластик, полистирол и другие. Широко используется во всех ключевых отраслях современной мировой экономики: электронике, машиностроении, строительстве и многих других. Во многом по этой причине полипропилен получил народное название «король пластмасс». И хотя пока он не является лидером в своем сегменте, постепенно сфера его применения расширяется.

Особенности

Полимерный материал выпускается в листах и прутках, однако чаще всего востребован листовой полиуретан, который обладает определенными свойствами:

  • материал устойчив к воздействию определенных кислотных компонентов и органических растворителей, ввиду чего его применяют в типографиях для изготовления печатающих валков, а также в химической индустрии, при хранении некоторых видов агрессивных химикатов;
  • высокая твердость материала позволяет применять его в качестве замены листового металла в тех областях, где присутствуют длительные повышенные механические нагрузки;
  • полимер проявляет высокую устойчивость к воздействию вибрации;
  • полиуретановые изделия выдерживают высокий уровень давления;
  • материал имеет малую способность к теплопроводности, сохраняя даже при минусовых показателях температуры свою эластичность, кроме того, он может выдержать показатели до +110°C;
  • эластомер устойчив к маслам и бензину, а также продуктам переработки нефти;
  • полиуретановый лист обеспечивает надежную электроизоляцию, а также защищает от воздействия влаги;
  • поверхность полимера устойчива к воздействию грибков и плесени, поэтому материал применяется в пищевой и медицинской сферах;
  • любые изделия из этого полимера могут быть подвержены многократным циклам деформации, после чего они вновь принимают свою первоначальную форму, не утрачивая при этом своих свойств;
  • полиуретан обладает высокой степенью износостойкости и устойчив к воздействию абразивов.

Полиуретановые изделия обладают высокими химико-техническими показателями и по своим свойствам в значительной мере превосходят металл, пластик и резину.

Особо необходимо выделить теплопроводность полиуретанового материала, если рассматривать его как теплоизолирующее изделие. Способность проводить тепловую энергию у этого эластомера зависит от его показателей пористости, выражающихся в плотности материала. Диапазон возможной плотности у различных марок полиуретана колеблется от 30 кг/м3 до 290 кг/м³.

Степень теплопроводности материала зависит от его ячеистости.

Уровень теплопроводности начинается с показателя 0,020 Вт/мхК и заканчивается на 0,035 Вт/мхК.

Что касается горючести эластомера, то его относят к классу Г2 – это означает среднюю степень горючести. Самые бюджетные марки полиуретана относят к классу Г4, что считается уже горючим материалом. Способность к горению объясняется наличием в низкоплотных образцах эластомера молекул воздуха. Если производители полиуретана обозначают класс горючести Г2, значит, в составе материала присутствуют компоненты-антипирены, так как иных методов снизить степень горючести у данного полимера не существует.

По степени воспламеняемости полиуретан относят к классу В2, то есть к трудновоспламеняемым изделиям.

Помимо положительных характеристик, полиуретановый материал обладает и рядом недостатков:

  • материал подвергается разрушению под воздействием фосфорной и азотной кислоты, а также неустойчив к действию муравьиной кислоты;
  • полиуретан неустойчив в среде, где имеется высокая концентрация соединений хлора или ацетона;
  • материал способен разрушаться под воздействием скипидара;
  • под воздействием высоких температурных режимов в щелочной среде эластомер через определенный промежуток времени начинает разрушаться;
  • если применять полиуретан вне его рабочих диапазонов температур, то химические и физические свойства материала изменяются в худшую сторону.

На российском рынке полимерных конструкционных материалов представлены эластомеры как отечественного, так и зарубежного выпуска. В Россию полиуретан поставляют зарубежные производители из Германии, Италии, Америки и Китая. Что касается отечественной продукции, то чаще всего в продаже встречаются полиуретановые листы марок СКУ-ПФЛ-100, ТСКУ-ФЭ-4, СКУ-7Л, ПТГФ-1000, ЛУР-СТ и так далее.

Товары для детей

Исключительная безопасность материала позволяет использовать его для производства детских товаров.

Сочетание нескольких его свойств – экологичность, высокая износостойкость, прочность обуславливают его широкое применение в быту.

Мировое потребление полипропилена увеличивается с каждым годом. Его доля в производстве товаров народного потребления неуклонно растет. Он постепенно захватывает новые сегменты рынка, вытесняя менее технологичные полимеры, прежде всего, полистирол и ПВХ. Уступая по такому показателю как экологичность, они постепенно сдают свои позиции на мировом рынке. Под влиянием общественности европейские законодатели медленно, но верно расчищают дорогу новых технологиям. Такие важные показатели как нетоксичность и легкая утилизация уверенно выводят его в лидеры.

Еще одним немаловажным фактором, способствующим росту популярности вещества, является низкая по сравнению с конкурентами цена

Себестоимость является определяющим критерием при производстве любой продукции, и поэтому производители все чаще обращают свое внимание в сторону более дешевых и технологичных материалов

Перспективы у этого высокотехнологичного материала весьма радужные. Очевидно, что его процент в мировом потреблении будет увеличиваться. Этому способствуют и постоянные исследования, и появление новых технологий и модификаций полипропилена. С большей долей вероятности, так будет продолжаться пока не появятся более совершенные синтетические материалы, но даже тогда пропилен будет широко использоваться в промышленности и народном хозяйстве.

Синтетические полимерные материалы и их применение

По способу производства синтетические полимерные материалы подразделяются на два класса: класс А — полимеры, получаемые цепной полимеризацией; класс Б — полимеры, получаемые поликонденсацией и ступенчатой полимеризацией.

Процесс полимеризации представляет собой соединение одинаковых и разных молекул. Побочных продуктов при полимеризации не образуется.

Процесс поликонденсации представляет собой соединение большого количества одинаковых и различных полиреактивных молекул низкомолекулярных веществ, в результате чего образуется высокомолекулярное вещество. При процессе поликонденсации выделяются вода, хлористый водород, аммиак и другие вещества.

Кремнийорганические смолы — это особая группа высокомолекулярных соединений. Особенность этих полимерных строительных материалов состоит в том, что они обладают свойствами как органических, так и неорганических веществ.

Физические и механические характеристики этих полимерных материалов практически не зависят от колебаний температуры по сравнению с обычными смолами, к тому же они обладают высокой гидрофобностью и теплостойкостью. Кремнийорганические смолы служат для получения различных изделий, стойких к действию повышенных температур (400-500°С).

Основная область применения этих синтетических полимерных материалов – изготовление бетонов и растворов для повышения их долговечности. Также их применяют в виде защитных покрытий на природных и искусственных каменных материалах (бетоне, известняке, травертине, мраморе и т. д.). Пропитка оказывает защитное действие в течение 6-10 лет, после чего ее следует возобновить.

Для поверхностей пропитки изделий из природного камня и других строительных конструкций применяют гидрофобизирующие кремнийорганические жидкости (ГКЖ), которые перед употреблением растворяют органическими растворителями, а также водную 50%-ную эмульсию (молочно-белого цвета), которую перед употреблением смешивают с водой в соотношении 1:10.

Поливинилацетатная дисперсия (ПВА) — это продукт полимеризации винилацетата в водной среде в присутствии инициатора и защитного коллоида. Это вязкая жидкость белого цвета, однородная, без криков и посторонних включений.

ПВА в зависимости от вязкости изготавливается трех марок: Н — низковязкая, С — средневязкая, В — высоковязкая. Она применяется при изготовлении полимерцементных растворов, мастик, паст, которые используются при облицовочных работах.

Латекс синтетический СКС-65ГП — продукт совместной полимеризации бутадиена со стиролом в соотношении 35:65 (по массе) в водной эмульсии с применением в качестве эмульгатора некаля и натриевого мыла синтетических жирных кислот. Латекс СКС-65ГП используется при изготовлении полимербетонов, эмульсионных красок, мастик и паст, применяемых при облицовочных работах. Также латекс используется при нанесении различных покрытий.

Физико-химические свойства этого полимерного строительного материала латекс СКС-65ГП:

  • содержание сухого вещества, %, не менее 47;
  • содержание незаполимеризованного стирола, %, не более 0,08;
  • концентрация водородных ионов (pH), не менее 11;
  • поверхностное натяжение, дин/см2, не более 40;
  • вязкость, с — 11-15;
  • содержание золы, %, не более 1,5.

Латекс синтетический СКС-ЗОШР — продукт совместной полимеризации бутадиена со стиролом в водной эмульсии, применяется в качестве связующего или клеящего материала при облицовочных работах.

Физико-химические свойства латекса СКС-ЗОШР:

  • содержание сухого вещества, %, не менее 33;
  • температура желатинизации, °С, не выше 14;
  • содержание свободной щелочи, %, не более 0,15.

Что лучше применить металлопластик или сшитый полиэтилен

Металлопластиковые трубы и трубы из сшитого полиэтилена довольно широко применяются как в системах водоснабжения, так и в отоплении.

Оба вида труб заслужили своё широкое применения за счёт надежности их эксплуатации. Но, как и у всех без исключения материалов имеются свои плюсы и минусы, к сожалению без этого никуда. Давайте теперь подробнее разберем каждую из этих труб и проведем параллели между ними, что бы понять что лучше металлопластик или сшитый полиэтилен.

Начнем с металлопластиковой трубы

Эта труба состоит из нескольких слоев, что наглядно демонстрирует рисунок ниже

Внутренний слой представлен чаще сшитым полиэтиленом, гладкая поверхность которого предотвращает карбонатные отложения на её внутренней стенке и защищает трубу от агрессивной среды.

Слой алюминия играет роль армирования всей трубы и препятствует проникновению свободного кислорода в транспортируемую ею среду, что является важной характеристикой при использовании трубы в системе отопления. Ведь кислород беспощадно и губительно воздействует на металлические элементы отопления, сокращая срок их службы в разы

Верхний слой металлопластиковой трубы состоит либо из полипропилена, либо из того же материала, что и внутренний слои. Этот слой защищает алюминиевый слой от механических повреждений, химических воздействий на неё, а так же придает общую прочность всей трубы.

Металлопластиковая труба выдерживает высокое давление при одновременном воздействии высоких температур.

Если перечислить все основные достоинства металлопластиковой трубы, то это будет выглядеть так:

  • Защита от кислородного проникновения при применении их в системе отопления в частности для тёплого пола
  • Антикоррозийные свойства трубы, то есть она не ржавеет, не подвержена электрохимической коррозии.
  • Максимальная рабочее давление 10 атмосфер при максимальной температуре 95 C
  • Срок эксплуатации до 50 лет при условии соблюдения условий эксплуатации
  • Легкость при монтаже. Труба хорошо сгибается руками, что дает возможность обойтись без лишних соединения.
  • Низкий коэффициент температурного расширения

К недостаткам металлопластиковых труб относится следующее:

  • Разный коэффициент линейного расширения слоев трубы может спровоцировать их расслоение. По этой же причине места фитингового соединения могут время от времени давать течь.
  • При сильном затягивании резьбовой фитинг может прорезать трубу.
  • При замерзании воды в трубе её может порвать.
  • При сгибании труба может заломиться. Хорошо что это будет короткий участок, который не жалко заменить. А если вы укладываете трубу в теплый пол, где необходимо сделать очень много изгибов и допустим у вас это произошло, вам придется заменить этот контур полностью, ведь соединение трубы в стяжке тёплого пола крайне нежелательны.

Теперь рассмотрим трубу из сшитого полиэтилена

Полиэтилен сшивается на молекулярном уровне различными способами. Она обозначается маркировкой PEX. Не будем разбирать технологию производства, ведь статья не об этом.

Сшитие придает трубе дополнительную прочность и выносливость

К плюсам трубы из сшитого полиэтилена относится:

  • Противокислородный барьер. Производители наносят на трубу слой препятствующий прохождению свободного кислорода. Этот показатель не равняется нулю, но соответствуют немецким стандартам DIN.
  • Простота в установке
  • Рабочее давление до 20 атмосфер при максимальной температуры 95 C с допустимым кратковременным повышением до 110 C
  • Низкий уровень шума
  • Эксплуатация трубы около 50 лет при условии соблюдения эксплуатационных характеристик
  • Труба устойчива к замерзанию в ней воды
  • Сшитый полиэтилен обладает молекулярной памятью, что является большим плюсом. Если в случае с металлопластиковой трубой при заломе трубы её придется заменить, если это теплый пол или отрезать на месте перегиба и соединить фитингом, при условии что труба в дальнейшем будет всегда в доступном месте. В случае с PEX-трубой место перегиба достаточно нагреть до 100 C и она примет своё первоначальное состояние.

Залом трубы из сшитого полиэтилена до и после нагрева

Минусы полиэтиленовой трубы из сшитого полиэтилена:

Нежелательное воздействие прямых солнечных лучей.
Значительная разница линейного удлинения при нагреве по сравнению с металлопластиковой
Антидиффузный слой, предотвращающий проникновение кислорода, находится на наружной поверхности трубы, поэтому при неосторожном монтаже он легко повреждается.

Как видите у каждого из этих видов труб имеются свои плюсы и минусы и понять что лучше металлопластик или сшитый полиэтилен невозможно. Именно по этой причине оба вида трубы широко используются, но для тёплого пола всё же выбор делают больше в сторону PEX-трубы.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий