Подробное устройство шуруповерта: схемы и видео

Конструкция и принцип действия

«Brushless motor» в буквальном переводе означает бесщеточный двигатель, в конструкции которого отсутствует коллектор и щеточный узел. Также можно встретить сокращение BLDC, которым именуют бесщеточный электродвигатель постоянного тока.

Классический коллекторный двигатель

Щеточный узел — это механическая контактная часть якоря электродвигателя. С помощью него через пластины коллектора подается напряжение на обмотку якоря. Электрический ток, протекая по проводнику, вызывает электромагнитное поле. Магнитное поле обмотки якоря, взаимодействуя с постоянным магнитным полем статорных обмоток, приводит к возникновению крутящего момента на валу электродвигателя и его вращению. Чтобы вращение вала сохранялось постоянно, напряжение на отдельные проводники якорной обмотки нужно подавать в определенной последовательности. Электрический ток должен протекать по рамкам якорной обмотки в нужный момент, а электромагнитное поле, наводимое в проводниках, взаимодействовало с постоянным магнитным полем обмоток статора. В двигателе постоянного тока эту функцию выполняет коллекторный узел на якоре электродвигателя.

В бесщеточном электродвигателе коллектор и щетки отсутствуют, но принцип взаимодействия постоянного магнитного поля якоря с электромагнитным полем обмоток статора остается неизменным. Только в BLDC моторе нужно подавать постоянное напряжение на обмотки статора в определенные интервалы времени, имитируя работу коллектора.

Как правило, в конструкции статора бесщеточного мотора используются три пары обмоток, и напряжение на них подается поочередно. При подаче напряжения на первую пару обмоток якорь с постоянными магнитами поворачивается, выравнивая свое положение в соответствии с направлением силовых линий возникшего магнитного поля. В этот момент напряжение с первой пары обмоток снимается и подается на вторую пару. Поскольку якорь электродвигателя обладает определенным моментом инерции, он не останавливается моментально, а продолжает свое вращение, и его магниты начинают взаимодействовать со следующим магнитным полем. Так продолжается до тех пор, пока на обмотки статора поочередно подается напряжение.

Это упрощенная схема работы Brushless мотора. На самом деле, для усиления крутящего момента и исключения «провалов» его полки, в работе постоянно находятся две пары обмоток. Одна из них притягивает постоянные магниты якоря в моменты, когда они находятся до средней линии полюса катушки, а вторая подталкивает, как только полюс катушки пройден центральной частью постоянного магнита якоря. На первую пару катушек подается напряжение прямой полярности, а на вторую — обратной.

Для определения, на какие пары катушек нужно подать напряжение и какой полярности, в системе установлен датчик положения ротора. Он состоит из трех датчиков Холла, дающих контроллеру сигнал о необходимости формирования напряжения на каждой из пар катушек статора.

На видео наглядно проиллюстрирована работа бесщеточного двигателя:

Назначение всех деталей и узлов инструмента — как они называются

Если поломался шуруповерт, то перед тем, как его ремонтировать, нужно разобраться, какая конкретно деталь вышла из строя. Чтобы узнать неисправность самостоятельно, надо разобраться с назначением каждого узла и его конструктивными параметрами.

  1. Кнопка пуска — именно с нее начинается работа инструмента. Данный механизм выполняет две опции — включает цепь питания, то есть подает напряжение на электромотор, а также регулирует количество оборотов вращения двигателя. Чем сильнее нажатие кнопки, тем с большей скоростью будет вращаться патрон. В качестве регулятора оборотов применяется электронный ШИМ генератор, который установлен на плате. При нажатии на кнопку происходит перемещение контакта по плате. В качестве контакта применяется полевой транзистор, который и играет роль регулятора скорости вращения
  2. Электромотор — в портативных инструментах используются однофазные электродвигатели постоянного тока коллекторного типа. К достоинствам этих агрегатов относится высокая надежность и простота обслуживания. Электродвигатель состоит из магнитов (играют роль статора), якоря и щеток. Применение магнитов значительно удешевляет стоимость агрегата
  3. Реверс — эта опция реализуется за счет смены полярности на клеммах. Для того чтобы пользователь не выполнял смену полярности вручную, в конструкции инструмента применяются перекидные контакты в виде переключателя. Этот переключатель расположен возле кнопки «Пуск»
  4. Редуктор — это набор шестерней, за счет которых происходит увеличение момента вращения патрона или понижение скорости. В «шуриках» применяют два типа редукторов — планетарные и классические. Классические подобны тем, которые устанавливаются на дрелях, только в шуруповертах они встречаются очень редко. Более популярны планетарные редукторы, состоящие из кольцевой (промежуточная) и солнечной шестеренки, а также сателлитов. В действие от вала двигателя приводится солнечная шестерня. От ее вращения в движение приводятся сателлиты, передающие вращающий момент к кольцевой шестеренке. В зависимости от количества скоростей, планетарные редуктора могут быть двухступенчатыми или трехступенчатыми. Чем больше скоростей, тем дороже будет стоить инструмент
  5. Регулятор усилия — обычно применяется 16 позиций усилий, но есть и такие модели, которые имеют большее количество. От величины усилия зависит возможность завинчивания шурупа в дерево. Если нужно завинтить шуруп в гипсокартон или другие мягкие материалы, то большое усилие для этого не потребуется, поэтому регулятор можно установить в положение от 1 до 7
  6. Патрон — механизм имеет простой принцип работы. Состоит приспособление из трех кулачков, которые надежно фиксируют устанавливаемые насадки. Достоинство быстрозажимных устройств — высокая скорость смены насадок
  7. Корпус — пластиковая ударопрочная конструкция, внутри которой расположены все составные детали. Чтобы отремонтировать прибор, надо разобрать корпус. Для этого производители выпускают корпуса из двух частей, соединяемых при помощи винтов
  8. Аккумулятор — производители выпускают два типа портативных аккумуляторов с наполнением из никель-кадмия и литий-иона (как на мобильных телефонах). Литий-ионные являются долговечными и более надежными, однако они стоят в 3-4 раза дороже, чем инструменты с никель-кадмиевыми батареями. Обычно с шуруповертом комплектуется две никель-кадмиевые батареи, что связано с небольшим их сроком службы

Это интересно! Если встречаются аккумуляторы, которые имеют цельную конструкцию корпуса, то это означает, что они не предназначены для самостоятельного ремонта.

Если сломался шуруповерт, то отремонтировать его дома не трудно, если только отыскать поломку. К частым проблемам неисправностей шуруповертов относят выход из строя аккумуляторов, замена которых может вызвать некоторые трудности. Рассмотрим механические и электрические неисправности, а также особенности их устранения своими силами.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Как отремонтировать кнопку шуруповерта если она не работает — подробная инструкция

Для проведения диагностики и выполнения ремонта шуруповерта понадобятся следующие инструменты:

  • Крестовая отвертка;
  • Отвертка с узким плоским шлицем.

В результате активной эксплуатации любого электроинструмента внутри его корпуса неминуемо скапливается грязь.

Поэтому прежде чем отправляться в магазин за новым блоком, следует попробовать очистить старый. Образовавшийся на контактах нагар также следует зачистить мелкой наждачкой. Если кнопка неразборная, придется заменить весь блок.

Этапы проведения диагностики:

  1. Разбираем корпус инструмента. Для этого отсоединяем аккумуляторную батарею, откручиваем все винты (они могут быть спрятаны за декоративными накладками, которые придется снять).
  2. Проверяем исправность электродвигателя. Для этого от блока управления отсоединяем два провода питания и подключаем их к контактам аккумулятора (двигатель должен заработать).
  3. Разбираем кнопку шуруповерта. Для этого нужно отжать пластмассовые защёлки и разъединить две части корпуса кнопки.
  4. Производим визуальный осмотр состояния кнопки на предмет наличия грязи и повреждений.
  5. Далее нужно аккуратно собрать кнопку шуруповерта, установить на место и протестировать.

ВИДЕО ИНСТРУКЦИЯ » alt=»»>

Если очистка блока управления результата не дала, необходимо произвести замену всего блока кнопки.

Для этого нужно:

  1. Разобрать шуруповерт (процесс описан выше);
  2. Установить новую кнопку на место старой;
  3. Подключить двигатель в клеммы кнопки (соблюдение полярности в данном случае необязательно);
  4. Собрать шуруповерт, аккуратно разместив провода в корпусе.

Очень важно подобрать кнопку под конкретную модель шуруповерта, поскольку при всем внешнем сходстве и визуальном соответствии деталь может не встать в пазы. Как правило, новые кнопки продаются в комплекте с клеммами аккумулятора и транзистором

Читать также: Сколько стоит шина на бензопилу штиль

Шуруповерт — мобильный инструмент, облегчающий работу с крепежными элементами и резьбовыми соединениями.

Раньше аккумуляторные шуруповерты вы могли повстречать только в арсенале экспертов, но появления в широкой продаже дешевых бытовых моделей их популярность резко возросла.

В противоположность дорогого проф инструмента, экономные аналоги владеют наименьшим ресурсом, по причине чего почаще приходят в негодность.

Одно из самых слабеньких мест бытового шуруповерта

кнопка запуска и переключатель реверса. Практика показывает, конкретно они ломаются в большинстве случаев.

Вы, нашему клиенту остается начинается со съема всех дополнительных деталей, что перестает работать функция плавного запуска, потом для пуска электродвигателя требуется более сильное нажатие на «курок».

С течением времени инструмент и совсем перестает реагировать на любые манипуляции. Часто встречается неувязка обратного нрава, когда моторчик начинает работать самопроизвольно.

Изредка для устранения недостатка довольно разобрать инструмент и прочистить, хотя почаще требуется полная смена кнопки шуруповерта. И в первом, и во 2-м случае убрать делему можно самостоятельно. О всем все по порядку.

Кнопка шуруповерта — основной отран управления, который делает сходу несколько функций:

  • Включение/включение инструмента;
  • Переключение направления вращения;
  • Плавный запуск мотора;
  • Регулировка оборотов.

Одновременно любой из частей управления, интегрированных в блок кнопки, по большому счету не способен работать корректно. Не считая переключателя направления вращения, который почаще представляет из себя но очень многофункциональный блок.

Регулятор оборотов шуруповерта и схема его элементов

В этой статье мы рассмотрим устройство шуруповерта

Уделим особое внимание таким ответственным деталям в конструкции, как регулятор оборотов шуруповерта. Кроме того, разберемся, как устроен регулятор усилия шуруповерта

Подробно опишем процесс изготовления регулятора оборотов своими руками, а также ознакомимся с такой функцией шуруповерта, как автоматическая регулировка оборотов.

Регулятор оборотов шуруповерта

Электрический шуруповерт работает либо от сети 220 В, либо от аккумуляторной батареи. Его мощность зависит от величины напряжения аккумулятора. Скорость вращения шуруповерта начинается от 15 000 об/мин. Кроме того, шуруповерт, который работает от сети, имеет 2 скорости вращения: более медленную для вкручивания, более высокую для сверления. Внутри кнопки подачи питания располагается регулятор оборотов. Довольно миниатюрный размер этого узла инструмента достигается при помощи микропленочной технологии. Его основной деталью является симистор. Принцип работы регулятора следующий:

  • При включении кнопки на управляющий электрод симистора подается переменный ток, имеющий синусоидальную фазу.
  • Происходит открытие симистора, ток начинает проходить через нагрузку.

Время срабатывания симистора зависит от амплитуды управляющего напряжения. Чем больше амплитуда, тем раньше происходит срабатывание симистора. Величина амплитуды задается при помощи переменного резистора, соединенного с кнопкой пуска. Схема подключения кнопки отличается в разных моделях. К регулятору оборотов возможно подключение конденсатора.

Зачастую в нынешних экономических условиях не всегда покупатель может себе позволить полноценный дорогой шуруповерт от именитых фирм. В более дешевых моделях такой функции может и не быть. Но это не повод отчаиваться. Регулятор оборотов можно собрать самостоятельно, о чем мы и поговорим ниже.

Регулятор оборотов шуруповерта собирается на основе ШИМ – контроллера и ключевого многоканального полевого транзистора. Управление работой этого узла инструмента осуществляет резистор. Его положение зависит от давления на кнопку пуска шуруповерта.

Направление вращения рабочего органа меняется путем смены полюсов напряжения, которое подается на щетки двигателя. Инструментально это осуществляется при помощи перекидных контактов, приводящихся в действие рычажком реверса.

Асинхронный двигатель и регулятор оборотов

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Разобрал шуруповерт Makita 6281D

И снова здравствуйте. Продолжаю серию познавательных постов с картинками. Сегодня проведём вскрытие аккумуляторного шуруповерта Makita 6281D.

Шуруповерт перестал подавать признаки жизни, не реагирует на нажатие кнопки включения. Попробуем вернуть его к жизни.

Лично мне шуруповёрты Makita не нравятся, не сидит он у меня в руке, и внешне не привлекает внимание. Но на вкус и цвет, как говориться, все фломастеры разные

Ну и есть у макитовских шуруповёртов жирный минус и сейчас я его покажу на схеме. Кстати, у боша аналогичная ситуация. Но у боша, на некоторых моделях, шестерни частично подходят от хитачи, а у хитачи редуктор можно перебрать по шестерёнке.

Кружочком красным выделен редуктор, и поставляется он только в сборе. Но это я отхожу от темы, проблема не в редукторе, он тут в хорошем состоянии. Аккумулятор замерил, 15.1В.

Начинаю разборку. Раскрутил корпус, и разделил на две половинки. Перед нашими глазами предстал мотор, соединённый с редуктором, а ниже кнопка с контактной колодкой. Отделил от корпуса мотор, редуктор, и кнопку.

Осмотр показал, что на моторе закончились щётки, одна из них просто выпала. Мотор кстати уже менялся. Стоит не оригинальный электродвигатель. Проверка кнопки на рабочем моторе выявила так же проблему: кнопка работает только при полном нажатии и на максимальных оборотах, при плавном нажатии на кнопку мотор запускается и ток пропадает, мотор плавно останавливается.

Ну и отдельно вскроем редуктор и рассмотрим его детально, ступенчато. Покажу Вам, где находится самый распространённый дефект (корпус редуктора), листайте фотки =).

Кстати основная проблема выхода из строя редуктора – это переключатель передач. Пластиковая кнопка имеет по бокам отливы, которые должны фиксировать кнопку переключения скорости в одном из двух положений. Но с завода они не достаточно надёжно фиксируют кнопку, поэтому кнопка периодически под нагрузкой позволяет переключающей шестерне выйти из фиксированного положения. Это приводит к свернутым зубьям на заднем пластиковом корпусе редуктора и приходится менять редуктор целиком.

Исправить ситуацию можно с помощью плоской отвёртки и зажигалки.

Источник

Как устроен шуруповерт или конструкция прибора

Рассматриваемый вид инструмента работает по принципу перевоплощения электронной энергии в механическую, тем совершая полезную работу. Исходя из этого, шуруповерты классифицируются на сетевые и аккумуляторные. Популярностью пользуются аккумуляторные модели за счет их портативности, но сетевые также имеют преимущество — это высочайшая мощность по сопоставлению с аккумуляторными. Сетевые шуруповерты еще именуют дрелями, потому что ими можно не только лишь завинчивать крепежные изделия, да и сверлить дерево и металл.

Наружное устройство сетевых и аккумуляторных моделей фактически схожее, кроме малозначительного отличия. Это отличие заключается в присутствии батареи на портативных инструментах, также наличие провода для подключения в розетку на устройствах сетевого типа. Внутреннее устройство имеет больше различий, но, механизм работы шуруповертов сетевого и аккумуляторного типа однообразный. Главными конструктивными элементами рассматриваемых устройств являются:

  • Корпус из ударопрочного пластика
  • Патрон (обычно быстрозажимного типа)
  • Кнопка, выключатель либо курок для пуска инструмента
  • Переключатель режимов направления движения исполнительного органа — реверс
  • Регулятор скорости в виде переключателя
  • Регулятор силы момента — более известен, как трещотка

Чтоб осознавать устройство, ниже представлено фото с описанием каждого элемента. Работа устройства основывается на последующих деталях, которые находятся снутри корпуса:

  • Электромотор коллекторного либо бесколлекторного типа
  • Шестеренчатый механизм в виде планетарного редуктора
  • Предохранительная муфта с регулятором усилия — исключает заклинивание и перегрев мотора, предотвращая тем выход его из строя

Зависимо от модели инструмента, они также дополнительно могут оснащаться подсветкой, индикацией заряда батареи либо LED-дисплеем. В конструкции корпуса могут быть пазы для размещения сменных бит, что упрощает эксплуатацию устройства.

Модели с разным напряжением

Мало определиться с типом зарядника и маркой производителя, для приобретения нужно знать еще напряжение своего шуруповерта. Самые распространенные варианты — 12, 14 и 18 В.

Зарядки на 12 В

Цепь может состоять из транзисторов до 4,4 пФ. Это видно на схеме зарядного устройства для шуруповерта 12 вольт. Проводимость в цепи — 9 мк. Конденсаторы нужны, чтобы контролировать скачки тактовой частоты. Применяемые резисторы — обычно полевые. У зарядных устройств на тетродах есть дополнительный фазовый резистор. Он защищает от электромагнитных колебаний.

Зарядки на 12 В работают с сопротивлением до 30 Ом. Нередко их можно встретить на аккумуляторах на 10 мАч. Среди известных производителей чаще применяет Makita.

Зарядки на 14 В

На схеме видно, что для зарядок на 14 В нужно пять транзисторов. Другие особенности цепи:

  • микросхема подходит только четырехканальная;
  • конденсаторы — импульсные;
  • для работы с аккумуляторами на 12 мАч нужны тетроды;
  • два диода;
  • проводимость — около 5 мк;
  • средняя емкость резистора — не более 6,3 пФ.

Устройства, созданные по схеме, выдерживают ток до 3,3 А. Триггеры включаются в цепь редко. Исключением является продукция Bosch. У изделий Makita триггеры с успехом заменяются волновыми резисторами.

Зарядки на 18 В

Зарядное устройство для шуруповерта 18 вольт использует в схеме лишь транзисторы переходного типа. К другим особенностям изделий относятся:

  • три конденсатора;
  • тетрод и диодный мост;
  • сеточный триггер;
  • проводимость тока — около 5,4 мк, иногда для ее увеличения применяются хроматические резисторы.

Использование трансиверов повышенной проводимости является особенностью отечественной компании «Интерскол». Токовая нагрузка может доходить до 6 А. Makita часто использует в своих моделях дипольные транзисторы высокого качества.

Какой бы производитель шуруповерта ни был выбран, проблему с заменой зарядного устройства можно легко решить. Для этого достаточно хотя бы знать некоторые особенности своего инструмента.

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Дрель механическая ручная

Благодаря разнообразию электронных инструментов обычные механические приспособления утратили былую популярность. Однако в определенных аспектах подобные конструкции превосходят электрический инструмент. Механические приспособления автономны и мобильны, а главное – для их работы не требуется электроэнергия и другие источники питания. Дрель ручная с успехом может использоваться на объектах без доступа к электричеству.

«Потомком» ручной дрели является коловорот, который по сей день используется при ремонте и других работах. Устройство актуально для откручивания шурупов или засевших намертво саморезов.

Конструкция коловорота проста, он состоит из рамы и патрона для сверл. Рама имеет специальный изгиб для удобной фиксации. Сбоку на устройстве имеется рукоятка, при помощи которой и движется инструмент.

Верх конструкции оснащен ручкой-грибком. За которую нужно держать коловорот для наилучшего вхождения в материал. Схожий принцип работы имеет бур для рыбалки.

Плюсы и минусы бесщеточного шуруповерта

Производители пишут, что основная изюминка бесщеточного шуруповерта — не нужно менять щетки, которых нет. Это на самом деле так, но так ли сложно поменять щетки?

За этим «жирным» плюсом притаился довольно коварный минус. Дело в том, что более-менее нагруженный шуруповерт потребует замены щеток на второй, а то и третий год работы. Проводя их замену, бережливый владелец наверняка заглянет и в другие узлы инструмента

Обратит внимание на состояние подшипников, очистит внутренности от пыли, заложит порцию свежей смазки — в общем, проведет полное техобслуживание инструмента. В случае с бесколлекторным инструментом, о необходимости сервисного обслуживания можно просто забыть и вспомнить о нем, когда шуруповерт начнет конкретно барахлить

Вот по-настоящему значимые преимущества бесщеточного инструмента:

Но бесщеточным инструментам присущи и некоторые недостатки:

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) – векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном – номинальная частота вращения, мин-1

Начальный пусковой момент – момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя – это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность – физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t – время, с

Работа – скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение – значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя – характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 – подведенная мощность (электрическая), Вт,
  • P2 – полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями – в виде тепла в результате нагрева проводников с током;
магнитными потерями – потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями – потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями – потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n – частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции – скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m – масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) – напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени – это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Корпус

Внешняя часть устройства с контактной ручкой.

У корпуса шуруповерта может быть несколько видов:

  • пистолет. Используется только в бюджетных моделях шуруповерта. Вращающийся вал крепится напрямую к патрону. Удобен для бытовых целей, справляется с завинчиванием шурупов. Главный минус – высокая скорость нагрева, а также необходимость давления во время работы из-за низкой мощности.
  • T-образный. Внешне напоминает шуруповерт в форме пистолета, но ручка смещена к центру. Такая эргономика обеспечивает возможность удобство во время продолжительной работы. Может быть оснащен разным по мощности электродвигателем. Нашел применение в компактных моделях.
  • Классическая дрель. Чаще встречается в профессиональных моделях. Имеет характерную выпуклость, в которой находится механизм для передачи усилия на патрон через редуктор. Движения биты плавные, часто имеется возможность регулировки скорости. Желательно наличие дополнительной ручки, так как вес инструмента может превышать 2 кг.

При выборе корпуса шуруповерта следует обратить внимание на качество материалов изготовления. Желательно выбирать модели из плотного пластика с металлическими вставками и прорезиненными элементами в контактных частях

Рукоять должна удобно лежать в руке, не вызывать дискомфорта. Рекомендуется, чтобы кнопка питания, реверса, а также регуляторы скорости и мощности были в свободном доступе для пальцев. Не стоит покупать модель с явным люфтом любых движущихся частей.

Планетарный редуктор

Вне зависимости от оснащенности модели, он всегда находится в отдельном корпусе, выполнен из пластика или металла. Основные элементы редуктора шуруповерта:

  • солнечная шестерня;
  • кольцевая шестерня;
  • сателлиты;
  • 1-2 водила.

Основная деталь – кольцевая шестерня, имеющая цилиндрическую форму. По ее окружности располагаются небольшие зубья, по которым двигаются сателлиты. Как правило, они устанавливаются на прочные штифты водила, в центре первого ряда находится солнечная шестерня.

Подвижный вал вставляется в редуктор с помощью магнитных контактов, в процессе работы совершает вращательные движения. Двухступенчатый редуктор всегда содержит второе водило. Учитывая сложность работы, оно может двигаться быстрее или медленнее крутящего момента вала двигателя инструмента.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий