Сталь 13ХФА конструкционная легированная

Механические свойства стали 13ХФА

Механические

Свойства по стандарту ТУ 14-1-5598-2011

Класс прочности Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Ударная вязкость, кДж / м2, KCU
К52 355-472 510-628 20 34,3

Свойства по стандарту ТУ 1303-006.3-593377520-2003

Сортамент Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Ударная вязкость, кДж / м2, KCU
Трубы горячедеформированные 383-529 529 20 59

Свойства по стандарту ТУ 1308-245-0147016-2002

Сортамент Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Ударная вязкость, кДж / м2, KCU
Трубы горячедеформированные нефтегазопроводные 353-470 502-627 25 196

Свойства по стандарту ТУ 1317-006.1-593377520-2003

Сортамент Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Ударная вязкость, кДж / м2, KCU
Трубы горячедеформированные 353-519 502-686 25 196

Свойства по стандарту ТУ 1317-233-0147016-2002

Сортамент Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Ударная вязкость, кДж / м2, KCU
Трубы горячедеформированные нефтегазопроводные 338-470 502-627 25 196

Свойства по стандарту ТУ 1469-011-593377520-2005

Предел текучести, σ0,2, МПа Временное сопротивление разрыву, σв, МПа Относительное удлинение при разрыве, δ5, %    Твердость, HRB
Класс прочности К48
338-451 470 25 92
Класс прочности К50
343-470 491 25 92
Класс прочности К52
353-491 510 23 92
Класс прочности К54
383-510 530 23 92
Класс прочности 56
392-539 549 23 92

Механические свойства стали 13ХФА

Вид поставкиСечение, ммsТ|s0,2, МПаσB, МПаd5, %KCU, кДж/м2HRCHRBHV, МПа
Листовой прокат для труб по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCV-40°С)≥375510-610≥23≥882≤92
Трубы бесшовные горячедеформированные нефтегазопроводные повышенной коррозионной стойкости и хладостойкости по ТУ 1383-010-48124013-03. В состоянии поставки (указаны мехсвойства металла труб и KCV-40 °С)≥350≥510≥20≥784≤92
Трубы бесшовные горячедеформированные термообработанные в состоянии поставки по ТУ 1319-369-00186619-2012. В графе KCU указано KCV-50°С/KCU-60°С)372-491≥510≥23≥981/588≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по TУ 1317-006.1-593377520-2003 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)89-426372-491≥510≥23≥980≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по ТУ 1317-233-0147016-02 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)338-470502-627≥25≥980≤92
Трубы по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCU-60°С/KCV-20°С)≥350510-630≥20≥392/392≤22≤250

Основные характеристики и свойства

При выборе металла уделяется много внимания основным характеристикам. К ним отнесем:

  1. Показатель твердости. Он может варьировать в большом диапазоне и зависеть от того, была ли проведена термическая обработка. Твердость стали 20 выдерживается на уровне 163 МПа. Этого вполне достаточно для изготовления различных изделий, которые обладают высокой износостойкостью.
  2. Также учитывается и плотность. Менее плотные материалы применяются для изготовления изделий, которые будут обладать небольшим весом. В рассматриваемом случае показатель составляет 7,85 к/см3.
  3. Рассматривая основные характеристики учитывается предел текучести и предел прочности. Они рассматриваются при создании различных проектов. Металл Ст 20 может улучшаться для того, чтобы увеличить характеристики материала.
  4. Структура характеризуется тем, что не склонна к отпускной хрупкости и образованию флокенов.
  5. Проводимая термообработка стали 20 позволяет существенно увеличить срок службы изделия. Проводится она при определенных режимах. К примеру, для ковки структура нагревается до температуры 1 280 градусов Цельсия.
  6. При необходимости есть возможность проводить сваривание деталей.
  7. Ударная вязкость стали 20 определяет то, что металл часто применяется при изготовлении валов и других подобных изделий, которые могут использоваться при создании элементов, применяемых при создании различных механизмов. Модуль упругости также учитывается при рассмотрении основных свойств металла.
  8. Средний коэффициент теплопроводности определяет то, что структура может нагреваться достаточно быстро, но при этом тепло отводится с высокой эффективностью.

Сталь 13ХФА Москва и Московская область

Сталь имеет широкий спектр применения в машиностроении, производственной отрасли, строительстве, судостроении, авиастроении и многих других сферах промышленности. Существует множество марок сталей, большинство из них производятся на заказ, есть марки которые постоянно находятся на складе ввиду регулярного спроса. Компания Ресурс реализует сталь 13ХФА напрямую от производителя. При постоянном спросе мы готовы предложить взаимовыгодные условия поставки многих марок стали. В том числе и 13ХФА.

Выгодная цена на марку 13ХФА определяется минимальной наценкой и отсутствием посредников. Мы несем полную ответственность за поставленный материал и гарантируем качество поставки. Стоимость продукции определяется складскими и логистическими затратами, мы имеем возможность поставки стали напрямую с завода производителя, это дает возможность нашим клиентам вести стабильно свой бизнес.

09Г2С — свойства

Состав сплава обеспечивает этому материалу следующие основные свойства:

  • плотность 7,85 г/куб. см.;
  • предел текучести, при нагреве до различных температур лежит в диапазоне от 255 до 155 МПа.

Детали из сплава 09Г2С могут быть сварены между собой любым известным видом сварки, используемым в промышленности. При этом нет необходимости в проведении каких-либо никаких дополнительных подготовительных операциях, например, предварительном подогреве места сварки.

Многолетний опыт показывает, что более высокое количество углерода приводит к образованию различных дефектов, например, пористости, непроварам. Более того, при выгорании углерода в структуре сварного шва образуются закаленные микроучастки и это приводит к снижению качества шва.

Среди многих достоинств этой стали можно назвать и то, что она не приобретает дополнительную хрупкость после отпуска. Кроме того, ее структура позволяет обеспечить устойчивость к излишнему нагреву и как следствие появлению трещин в районе сварного шва.

Для производства стали этой марки применяют несколько способов:

  • мартеновский;
  • электротермический;
  • конверторный.

В качестве основного сырья применяют чугун. В соответствии с требованиями ГОСТ расплав оптимизируют, то есть:

  • поднимают количество углерода;
  • вводят легирующие компоненты.

Благодаря этим мероприятиям готовая продукция получает требуемые свойства.

Применение

В основном такой сплав отпускают на выпуск деформируемых в горячем состоянии труб с высокой коррозионной стойкостью. Типично для этих труб изготовление по бесшовной методике. Потом их отпускают для сооружения нефтепроводов и газопроводов. Популярность такого варианта применения продукции из 13ХФА связана с:

  • хладостойкостью;
  • низкотемпературностью вязко-хрупкого периода;
  • отличной сопротивляемостью химическому разложению;
  • малой растрескиваемостью;
  • стабильностью свойств в широком температурном диапазоне.

Трубы из 13ХФА могут иметь длину 4-12,5 м. Помимо них, из этой стали делают арматуру, включая и различные фланцы. Эта арматура также уходит преимущественно в нефтегазовую отрасль. Такие изделия находят применение и на магистральных, и на технологических коммуникациях.

Механически и физические свойства сплава

Металл данной марки следует отнести к трудносвариваемым сталям, которые в процессе сварки необходимо нагревать, а затем охлаждать. Здесь и высокая флокеночувствительность материала, т.е. его склонность к образованию неоднородных участков, и наличие отпускной хрупкости.

Сталь 40х – хромистая, с содержанием углерода в 0,40%, равно как и марки 65Г, 50ХФА и 30Х3МФ, выступает заменителем сплаву 40хфа. Иностранными же аналогами считаются следующие виды металлов: 4140, 4142 и G41400 – в США; 1.7223 и 41CrMo4 – в Германии, SCM440 – в Японии и т.д.

Плотность стали 40хфа, её твёрдость при определенных температурных условиях и прочие характеристики представлены в следующих таблицах:


В качестве обязательной термообработки в случае со сплавом 40хфа применяется традиционная закалка и отпуск (в соответствии с ГОСТом на сталь данной марки). Ковка металла должна начинаться при 1250оС, а завершаться – при 860-800оС.

ПРИЛОЖЕНИЕ 3 Рекомендуемое

МЕТОДИКА ОПРЕДЕЛЕНИЯ ПРОЦЕНТА ВЯЗКОЙ СОСТАВЛЯЮЩЕЙ В ИЗЛОМЕ УДАРНЫХ ОБРАЗЦОВ (ДЛЯ ПРОКАТА ИЗ УЛУЧШАЕМОЙ СТАЛИ)

1. Процент вязкой составляющей в изломе ударных образцов характеризует сопротивление стали хрупкому разрушению.

Хрупкая составляющая в изломе ударного образца сечением 8×10 мм имеет вид трапеции (черт. 1). Площадь этой трапеции F1 увеличивается по мере увеличения доли хрупкой составляющей (черт. 2).

Схема ударного излома.

1 – площадь излома, занимаемая хрупкой составляющей; 2 – площадь, занимаемая вязкой составляющей

Черт. 1

Вязкая составляющая располагается, как правило, вокруг хрупкой составляющей. Площадь F1, занимаемую хрупкой составляющей, определяют как произведение средней линии трапеции а на высоту b (см. черт. 1). Отношение этой площади ко всей площади излома F (80 мм2) составляет долю хрупкой составляющей в изломе (X) в процентах:

Соответственно, вязкая составляющая (В) в процентах равна:

В = (100 – Х).

2. Замер параметров (а, b) площади, занимаемой хрупкой составляющей, производят линейкой с точностью до 0,5 мм; при этом погрешность измерения не должна превышать 5 %. Зная параметры а и b, процент составляющей определяют по таблице.

Высота трапеции b, мм

Вязкая составляющая в изломе ударных образцов, %

Средняя линия трапеции а, мм

1,0

1,5

2,0

2,5

3.0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

10

1,0

99

98

98

97

96

96

95

94

94

93

92

92

91

91

90

89

89

88

88

1,5

98

97

96

95

94

93

92

92

91

90

89

88

87

86

85

84

83

82

81

2,0

98

96

95

94

92

91

90

89

88

86

85

84

82

81

80

79

77

76

75

2,5

97

95

94

92

91

89

88

86

84

83

81

80

78

77

75

73

72

70

69

3,0

96

94

92

91

89

87

85

83

81

79

77

76

74

72

70

68

66

64

62

3,5

96

93

91

89

87

85

82

80

78

76

74

72

69

67

65

63

61

58

56

4,0

95

92

90

88

85

82

80

77

75

72

70

67

65

62

60

57

55

52

50

4,5

94

92

89

86

83

80

77

75

72

69

66

63

61

58

55

52

49

46

44

5,0

94

91

88

85

81

78

75

72

69

66

62

59

56

53

50

47

44

41

37

5,5

93

90

86

83

79

76

72

69

66

62

59

55

52

48

45

42

38

35

31

6,0

92

89

85

81

77

74

70

66

62

59

55

51

47

44

40

36

33

29

25

6,5

92

88

84

80

76

72

67

63

59

55

51

47

43

39

35

31

27

23

19

7,0

91

87

82

78

74

69

65

61

56

52

47

43

39

34

30

26

21

17

12

7,5

91

86

81

77

72

67

62

58

53

48

44

39

34

30

25

20

16

11

6

8,0

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

В тех случаях, когда не требуется высокая прочность, процент вязкой составляющей допускается определять с помощью визуального сопоставления вида исследуемого излома (по хрупкой составляющей) со шкалой (см. черт. 2).

Шкала определения вязкости составляющей в изломе ударного образца

Черт. 2

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 18.06.71 № 1148

3. ВЗАМЕН ГОСТ 1050-60 (в части марок 15Г, 20Г, 25Г, 30Г, 35Г 40Г, 45Г, 50Г);

ГОСТ 1051-59 (в части легированной стали, кроме качества поверхности и упаковки);

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

4.2

2а.1

4.2

4.6

2а.1

4.11

4.2

2.9; 2.18; 4.7

4.2

4.4

4.2

4.1

5.1.3

4.1

2а.1

4.1

4.7

4.1

4.8

4.1

3.3

4.1

4.2

4.1

2а.1

4.1

2а.1

4.1

2а.1

4.1

4.2

4.1

4.2

4.1

4.9

4.1

4.10

4.1

4.2

4.1

2а.1

2.13; 5.1.3

4.2

4.1

4.5

5.1.1

3.3

5.1.2

3.2; 3.4; 5.1; 5.1.1

4.2

2а.1

4.1

5. Ограничение срока действия снято по протоколу № 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

6. ИЗДАНИЕ с Изменениями № 1, 2, 3, 4, 5, утвержденными в марте 1977 г., июле 1982 г., феврале 1987 г., июне 1987 г., декабре 1989 г. (ИУС 5-77, 11-82, 5-87, 10-87, 3-90)

Другие марки из этой категории:

  • Марка 10Г2
  • Марка 10Х2М
  • Марка 12Г2
  • Марка 12Х2Н4А
  • Марка 12Х2НВФА
  • Марка 12Х2НВФМА
  • Марка 12Х2НМ1ФА
  • Марка 12Х2НМФА
  • Марка 12ХН
  • Марка 12ХН2
  • Марка 12ХН2А
  • Марка 12ХН3А
  • Марка 14Х2ГМР
  • Марка 14Х2Н3МА
  • Марка 14ХГН
  • Марка 15Г
  • Марка 15Н2М (15НМ)
  • Марка 15Х
  • Марка 15ХА
  • Марка 15ХГН2ТА (15ХГНТА)
  • Марка 15ХГНМ
  • Марка 15ХФ
  • Марка 16Г2
  • Марка 16ХСН
  • Марка 18Х2Н4ВА
  • Марка 18Х2Н4МА
  • Марка 18ХГ
  • Марка 18ХГТ
  • Марка 19Х2НВФА
  • Марка 19Х2НМФА
  • Марка 19ХГН
  • Марка 20Г
  • Марка 20Г2
  • Марка 20Н2М (20НМ)
  • Марка 20Х
  • Марка 20Х12Н12Г6
  • Марка 20Х14
  • Марка 20Х17Н3М
  • Марка 20Х2Н4А
  • Марка 20ХГНМ
  • Марка 20ХГНР
  • Марка 20ХГНТР
  • Марка 20ХГР
  • Марка 20ХГСА
  • Марка 20ХМ
  • Марка 20ХН
  • Марка 20ХН2М (20ХНМ)
  • Марка 20ХН3А
  • Марка 20ХН4ФА
  • Марка 20ХНР
  • Марка 20ХФ
  • Марка 21Х2НВФА
  • Марка 21Х2НМФА
  • Марка 23Х2НВФА
  • Марка 23Х2НМФА
  • Марка 25Г
  • Марка 25Х2ГНТА
  • Марка 25Х2Н4ВА
  • Марка 25Х2Н4МА
  • Марка 25ХГМ
  • Марка 25ХГНМТ
  • Марка 25ХГСА
  • Марка 25ХГТ
  • Марка 27ХГР
  • Марка 30Г
  • Марка 30Г2
  • Марка 30Х
  • Марка 30Х10Г10Т
  • Марка 30Х3МФ
  • Марка 30Х5
  • Марка 30ХГС
  • Марка 30ХГСА
  • Марка 30ХГСН2А (30ХГСНА)
  • Марка 30ХГСНМА
  • Марка 30ХГТ
  • Марка 30ХН2ВА
  • Марка 30ХН2ВФА
  • Марка 30ХН2МА (30ХНМА)
  • Марка 30ХН2МФА
  • Марка 30ХН3А
  • Марка 30ХН3М2ФА
  • Марка 30ХРА
  • Марка 33ХС
  • Марка 34ХН1М
  • Марка 34ХН1МА
  • Марка 34ХН3М
  • Марка 34ХН3МА
  • Марка 35Г
  • Марка 35Г2
  • Марка 35Х
  • Марка 35ХГ2
  • Марка 35ХГН2
  • Марка 35ХГСА
  • Марка 35ХГФ
  • Марка 35ХН1М2ФА
  • Марка 36Г2С
  • Марка 36Х2Н2МФА (36ХН1МФА)
  • Марка 38Х2Н2ВА
  • Марка 38Х2Н2МА (38ХНМА)
  • Марка 38Х2Н3М
  • Марка 38Х2НМ
  • Марка 38Х2НМФ
  • Марка 38Х2Ю (38ХЮ)
  • Марка 38ХА
  • Марка 38ХВ
  • Марка 38ХГМ
  • Марка 38ХГН
  • Марка 38ХГНМ
  • Марка 38ХМ
  • Марка 38ХМА
  • Марка 38ХН3ВА
  • Марка 38ХН3МА
  • Марка 38ХН3МФА
  • Марка 38ХС
  • Марка 40Г
  • Марка 40Г2
  • Марка 40ГР
  • Марка 40Х
  • Марка 40Х2Г2М
  • Марка 40Х2Н2ВА
  • Марка 40Х2Н2МА (40Х1НВА)
  • Марка 40Х3Г2МФ
  • Марка 40ХГНМ
  • Марка 40ХГТР
  • Марка 40ХМФА
  • Марка 40ХН
  • Марка 40ХН2МА (40ХНМА)
  • Марка 40ХС
  • Марка 40ХСН2МА
  • Марка 45Г
  • Марка 45Г2
  • Марка 45Х
  • Марка 45Х4В3ГФ
  • Марка 45ХН
  • Марка 45ХН2МФА (45ХНМФА)
  • Марка 47ГТ
  • Марка 50Г
  • Марка 50Г2
  • Марка 50Х
  • Марка 50Х3В10Ф
  • Марка 50Х6ФМС
  • Марка 50ХН
  • Марка 50ХНМ
  • Марка Г13А
  • Марка Х6Ф1

Механические характеристики

Сечение, ммsТ|s0,2, МПаσB, МПаd5, %кДж/м2, кДж/м2HRCHRBHV, МПа
Листовой прокат для труб по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCV-40°С)
≥375510-610≥23≥882≤92
Трубы бесшовные горячедеформированные нефтегазопроводные повышенной коррозионной стойкости и хладостойкости по ТУ 1383-010-48124013-03. В состоянии поставки (указаны мехсвойства металла труб и KCV-40 °С)
≥350≥510≥20≥784≤92
Трубы бесшовные горячедеформированные термообработанные в состоянии поставки по ТУ 1319-369-00186619-2012. В графе KCU указано KCV-50°С/KCU-60°С)
372-491≥510≥23≥981/588≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по TУ 1317-006.1-593377520-2003 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)
89-426372-491≥510≥23≥980≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по ТУ 1317-233-0147016-02 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)
338-470502-627≥25≥980≤92
Трубы по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCU-60°С/KCV-20°С)
≥350510-630≥20≥392/392≤22≤250

Состав и характеристики металла

Характеристики стали марки 13ХФ ГОСТ 4543-71 следует рассматривать исходя из её состава и основных свойств.

Химический состав

По химическому составу она относится к категории углеродистых легированных сталей. В соответствие с установленным стандартом допускается следующий состав элементов. Как и в любой стали, основу составляет железо. В качестве добавок допускается углерод – в количестве 1,25-1,4, кремния до 0,4. Легирующих добавок: марганца – не более 0,45, хрома – до 0,7, никеля – до 0,35, ванадия более 0,25.

Физические свойства

Основные физические свойства соответствуют установленным ГОСТам и имеют следующие значения:

  • коэффициент линейного расширения изменяется от 11,9 (ТКЛР×106 1/град) при температуре в 100 °С до 14,9 (ТКЛР×106 1/град) при повышении температуры до 700 °С;
  • модуль упругости около 2,1МПа при нормальной температуре, понижается до коэффициента 1,89МПа при 900 °С и более;
  • плотность сплава не превышает 7680 кг/м 3 ;
  • удельная теплоёмкость около 540 Дж/(кг×град);
  • удельное электрическое сопротивление R×10 9 Ом.

Структура стали 13ХФА при закалке от 930 °С

Металл имеет ярко выраженную феррито-перлитную структуру. В основном она имеет округлую форму, ориентированную в направлении возможной деформации, что определяет её свойства.

Механические свойства

Эти свойства 13ХФА определяется входящими в состав сплава химическими элементами. Основные числовые характеристики, полученные при температуре в 20 °С имеют следующие значения:

  • величина ударной вязкости составляет 196 кДж/м 2 ;
  • допустимый предел кратковременной прочности находится в интервале от 502 до 686 МПа;
  • реализуемый предел текучести находится в интервале от 353МПа до 519 МПа;
  • максимальная величина относительного удлинения не превышает 25%.

Все приведенные свойства и характеристики соответствуют установленным требованиям ГОСТ для всех изделий из 13ХФА.

Труба бесшовная 325х8 мм 13хфа

13ХФА обладает определёнными достоинствами, что позволяет использовать её для решения целого круга специфических задач. К таким достоинствам относятся:

  • устойчивость к длительному воздействию низких и высоких температур (от -60 °С до +40 °С);
  • может выдерживать достаточно высокие внешние физические нагрузки (что свидетельствует о хороших показателях прочности);
  • высокая износоустойчивость;
  • все изделия обладают отличной свариваемостью;
  • транспортируемые внутри таких труб растворы могут нагреваться до 40 °С;
  • трубы, изготовленные из этого материала, способны выдержать внутреннее давление вплоть до 7,4 МПа;
  • 13ХФА очень стойкая к образованию различного вида трещин (сульфидных или водородных).

Описание стали

Этот вид стали характеризуется высокой жаропрочностью и является низколегированным сплавом. Она обладает уникальными свойствами.

Данный материал классифицируют как конструкционную коррозионно-хладостойкую легированную сталь. Существует псевдоним наименования данного материала, часто используют маркировку 13ХФ вместо 13ХФА, но это один и тот же вид.

Характеристики жаропрочных видов стали позволяют применять их в условиях высоких температур. Ее можно использовать при температуре, которая может немного отличаться от температуры плавления самой стали.

Из этого материала изготавливают бесшовные трубы, которые владеют стойкостью к коррозии и к пониженным температурам. Также из этой стали делают трубопроводные заготовки и арматуру (отводы, фланцы, переходы и др.).

Эти все заготовки используют в нефтяной промышленности и для поддержания пластового давления климатических условий.

Они поддаются высочайшим нагрузкам:

  • используются при температурах воздуха от -60 до +40;
  • растворы, которые они транспортируют, могут быть нагреты до 40 градусов;
  • давление в системах достигает 7,4 МПа.

Также данная марка стали стойкая к образованию сульфидных и водородных трещин, а также невосприимчивая к воздействию внешних химических и физических раздражителей.

Номенклатура продукции из стали 09Г2С

На металлургических предприятиях нашей страны производят следующий прокат:

  • 19281-73 Сортовой и фасонный прокат;
  • 19282-73 Листы и полосы.

То есть на рынке металлургической продукции потребители могут приобрести швеллер, уголок, лист и пр. Можно смело говорить, что такая ширина номенклатуры обеспечена именно свойствами и, конечно, ценой этого материала.

Для сравнения, можно сказать, что в среднем цена горячекатанного листа из стали 09Г2С составляет 43 000 рублей за тонну, в то время, как лист обычной стали стоит примерно 41 000 — 43 000. Но, свойства описываемого материала, перекрывают все затраты, связанные с его приобретением и обработкой.

Механические характеристики

Сечение, ммsТ|s0,2, МПаσB, МПаd5, %кДж/м2, кДж/м2HRCHRBHV, МПа
Листовой прокат для труб по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCV-40°С)
≥375510-610≥23≥882≤92
Трубы бесшовные горячедеформированные нефтегазопроводные повышенной коррозионной стойкости и хладостойкости по ТУ 1383-010-48124013-03. В состоянии поставки (указаны мехсвойства металла труб и KCV-40 °С)
≥350≥510≥20≥784≤92
Трубы бесшовные горячедеформированные термообработанные в состоянии поставки по ТУ 1319-369-00186619-2012. В графе KCU указано KCV-50°С/KCU-60°С)
372-491≥510≥23≥981/588≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по TУ 1317-006.1-593377520-2003 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)
89-426372-491≥510≥23≥980≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по ТУ 1317-233-0147016-02 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)
338-470502-627≥25≥980≤92
Трубы по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCU-60°С/KCV-20°С)
≥350510-630≥20≥392/392≤22≤250

Характеристика стали марки 13ХФА

13ХФА — Конструкционная легированная повышенной коррозионной стойкости и хладостойкости сталь. Трубы отличаются от нефтегазопроводных труб обычного исполнения по ГОСТ 8731, ГОСТ 8732, повышенной хладостойкостью, повышенной стойкостью к общей и язвенной коррозии, стойкостью к сульфидному коррозионному растрескиванию и образованию водородных трещин. Сваривается с ограничениями, способы сварки: РДС, АДС под флюсом.

Нашла свое применение для изготовления трубной заготовки и труб бесшовных горячедеформированных нефтегазопроводных повышенной коррозионной стойкости и хладостойкости, предназначенные для использования в системах транспортирующих газ, системах нефтегазопроводов, технологических промысловых трубопроводов, транспортирующих нефть и нефтепродукты, а также в системах поддержания пластового давления в условиях северной климатической зоны при температуре окружающей среды от -60°С до +40°С, температурой транспортируемых сред от +5°С до +40°С и рабочим давлением до 7,4 МПа; бесшовных горячедеформированных труб повышенной коррозионной стойкости и хладостойкости (ст.13ХФА), с наружным диаметром от 60 до 426 мм класса прочности не менее К52, для внутрипромысловых трубопроводов, транспортирующих продукцию нефтяных скважин (газопроводов и напорных нефтепроводов при давлении до 4,6 МПа); для изготовления электросварных экспандированных прямошовных труб повышенной коррозионной стойкости и хладостойкости, применяемых для газопроводов, технологических и промысловых трубопроводов на рабочее давление до 7,4 МПа транспортирующих нефть и нефтепродукты, для трубопроводов поддержания пластового давления в любых климатических зонах..

09Г2С — химический состав

Сталь относится к кремнемарганцовистым. В соответствии с требованиями ГОСТ 27772-88 полностью соответствует стали С345. Последняя используется для изготовления строительных конструкций.

В соответствии с принятой в нашей стране системой маркировки — состав 09Г2С расшифровывается следующим образом:

  • углерод (С) — 0,09%;
  • марганец (Мn)- 2%;
  • кремний (Si) — не более 1%.

Количество легирующих компонентов в составе стали не так и высоко, именно поэтому сталь 09Г2С относят к низколегированным. Этот сплав лежит в основании целого семейства сталей. Например, — 09г2, 09г2дт, 09г2т, 10г2с и многие другие. Характеристики сплавов этого семейства примерно схожи.

Сварка углеродистых и легированных сталей: оборудование и материалы

Стальные изделия создают современную цивилизацию. Синтетики, частично вытеснили металл из некоторых ниш (к примеру, инженерные системы отопления и водопровода), однако на фоне общего объема применения это прошло почти незаметно.

Но там, где сталь, нужно соединение деталей из нее. Поэтому сварка стали давно выделилась в отдельную отрасль промышленности и науки.

Причем оказалось, что даже металлы, детали из которых внешне не имели заметных отличий, к созданию соединения относятся по-разному.

Влияют на это вносимые добавки, называемые легирующими, а также содержание углерода.

Влияние легированных примесей

Легирующими называют примеси меняющие свойства железа. По сути, только они превращают его в привычный материал. Такими добавками выступают редкоземельные металлы (напр. молибден, никель, ванадий), галогены (сера, фосфор), такие элементы как кремний или марганец. Самая распространенная — углерод.

Влияние примесей зависит от процентного состава их по отношению к объему. Особенно это заметно на примере добавок углеродных. Сварка высокоуглеродистых сталей труднее, чем большинства высоколегированных сортов.

Кроме прочего, некоторые добавки при высоких температурах выгорают. Это приводит к изменению свойств металла на стыке. Как правило, в худшую сторону.

Механические свойства стали 13ХФА

Вид поставкиСечение, ммsТ|s0,2, МПаσB, МПаd5, %KCU, кДж/м2HRCHRBHV, МПа
Листовой прокат для труб по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCV-40°С)≥375510-610≥23≥882≤92
Трубы бесшовные горячедеформированные нефтегазопроводные повышенной коррозионной стойкости и хладостойкости по ТУ 1383-010-48124013-03. В состоянии поставки (указаны мехсвойства металла труб и KCV-40 °С)≥350≥510≥20≥784≤92
Трубы бесшовные горячедеформированные термообработанные в состоянии поставки по ТУ 1319-369-00186619-2012. В графе KCU указано KCV-50°С/KCU-60°С)372-491≥510≥23≥981/588≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по TУ 1317-006.1-593377520-2003 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)89-426372-491≥510≥23≥980≤92
Трубы бесшовные нефтегазопроводные термообработанные в состоянии поставки по ТУ 1317-233-0147016-02 (образцы, в состоянии поставки указан класс прочности, в графе KCU указано значение KCV-50 °С)338-470502-627≥25≥980≤92
Трубы по ТУ 1381-116-00186654-2013 (образцы поперечные, в графе KCU указано KCU-60°С/KCV-20°С)≥350510-630≥20≥392/392≤22≤250

Термическая обработка

Термообработка позволяет существенно улучшить структуру и эксплуатационные свойства стали, а также нейтрализовать области напряженности. Режимы термообработки могут варьироваться. Так, нормализация выполняется при температурном режиме 900-950 градусов, после чего материал подвергается отпуску. Закалка производится при температуре 760-820 градусов с последующим охлаждением в воде.

Обязательной стадией любой термообработки является отпуск. Он позволяет повысить пластичность, вязкость, а также уменьшить все возникающие напряжения, не ухудшая при этом твёрдости материала. При этом нужно иметь в виду, что по мере возрастания температуры отпуска механические свойства стали 09Г2С снижаются.

По завершении термической обработки сталь формирует двухфазную ферритно-мартенситную структуру с увеличением показателя предела выносливости. Отключение участков мартенсита приводит к росту сопротивляемости на разрыв. При этом параметры технологической пластичности остаются неизменными.

Плюсы и минусы

Как и любой другой сплав, марка 09Г2С имеет свои достоинства и недостатки. К преимуществам относят:

  • возможность эксплуатировать готовые конструкции в большом температурном диапазоне от –70 до +420 градусов;

  • стойкость к силовым нагрузкам;

  • подверженность механическим и термическим обработкам разных видов;

  • повышенная прочность и, как результат, безопасность металлоконструкции;

  • длительный эксплуатационный ресурс — срок службы изделий из подобной стали превышает 25 лет;

  • отсутствие склонности к отпускной хрупкости;

  • стабильность ударной вязкости при проведении отпуска сплава;

  • стойкость к изнашиваемости;

  • малый удельный вес;

  • стойкость к растрескиванию;

  • оптимальное соотношение стоимости и качества.

Преимущества и недостатки

Марка 18ХГТ не единственная в своём роде. В случае необходимости вместо неё можно использовать другие марки – 25ХГТ, 30ХГТ,12ХГН3А. Но все они стоят дороже.

Высокая надёжность и долговечность деталей из 18ХГТ в сочетании с приемлемой ценой–неоспоримое её преимущество.

К недостаткам стали причисляют возможное внутреннее окисление при цементации, некоторые ограничения по величине прокаливания.

Заключение

История создания марки 18ХГТ насчитывает многие десятки лет. Она была разработана в начале 50-х годов 20-го века на заводе ЗИС. С тех пор появилось множество других марок. Но популярность стали 18ХГТ не уменьшилась. Среди хромомарганцевых конструкционных сталей она и сейчас лидирует по применяемости.

Рейтинг: /5 – голосов

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий